from transformers import pipeline def load_disease_pipeline(model_id): return pipeline( task="image-classification", model=model_id, top_k=3 ) def diagnose(image, pipe): results = pipe(image) preds = [f"{r['label']} ({r['score']*100:.1f}%)" for r in results] advice = ( "No disease detected—maintain standard crop care." if "healthy" in results[0]['label'].lower() else f"Disease detected: {results[0]['label']}. Apply targeted treatment." ) return preds, advice