Update utils/model.py
Browse files- utils/model.py +39 -21
utils/model.py
CHANGED
@@ -1,28 +1,46 @@
|
|
1 |
from transformers import pipeline, AutoModelForTimeSeriesPrediction
|
2 |
import torch
|
|
|
3 |
|
4 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
5 |
|
6 |
def predict_umkm(data):
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
demand_pred = ttm.generate(**inputs, max_length=7)
|
15 |
-
|
16 |
-
# Rekomendasi dengan Chronos-T5
|
17 |
-
chronos = pipeline(
|
18 |
-
"text-generation",
|
19 |
-
model="amazon/chronos-t5-small",
|
20 |
-
device=device
|
21 |
-
)
|
22 |
-
prompt = f"""
|
23 |
-
Data UMKM:
|
24 |
-
- Prediksi demand: {demand_pred}
|
25 |
-
- Stok saat ini: {data['supply'].iloc[-1]}
|
26 |
-
Beri rekomendasi dalam 1 kalimat:
|
27 |
-
"""
|
28 |
-
return chronos(prompt, max_length=50)[0]['generated_text']
|
|
|
1 |
from transformers import pipeline, AutoModelForTimeSeriesPrediction
|
2 |
import torch
|
3 |
+
import numpy as np
|
4 |
|
5 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
6 |
|
7 |
def predict_umkm(data):
|
8 |
+
try:
|
9 |
+
# ========== [1] GRANITE-TTM FORECASTING ==========
|
10 |
+
ttm_model = AutoModelForTimeSeriesPrediction.from_pretrained(
|
11 |
+
"ibm/granite-ttm-r2"
|
12 |
+
).to(device)
|
13 |
+
|
14 |
+
# Format input khusus untuk TTM
|
15 |
+
inputs = {
|
16 |
+
"values": torch.tensor(data['demand'].tolist()).float().unsqueeze(0).to(device),
|
17 |
+
"attention_mask": torch.ones(len(data['demand'])).unsqueeze(0).to(device)
|
18 |
+
}
|
19 |
+
|
20 |
+
# Generate prediksi
|
21 |
+
with torch.no_grad():
|
22 |
+
demand_pred = ttm_model.generate(**inputs, max_length=7)
|
23 |
+
|
24 |
+
# Konversi output ke numpy
|
25 |
+
demand_pred = demand_pred.cpu().numpy().flatten().tolist()
|
26 |
+
|
27 |
+
# ========== [2] CHRONOS-T5 DECISION MAKING ==========
|
28 |
+
chronos = pipeline(
|
29 |
+
"text-generation",
|
30 |
+
model="amazon/chronos-t5-small",
|
31 |
+
device=device
|
32 |
+
)
|
33 |
+
|
34 |
+
prompt = f"""
|
35 |
+
Data UMKM:
|
36 |
+
- Prediksi demand 7 hari ke depan: {demand_pred}
|
37 |
+
- Stok saat ini: {data['supply'].iloc[-1]}
|
38 |
+
- Harga rata-rata: {data['harga'].mean() if 'harga' in data else 'N/A'}
|
39 |
+
Berikan rekomendasi pembelian dalam 1 kalimat:
|
40 |
+
"""
|
41 |
+
|
42 |
+
recommendation = chronos(prompt, max_length=100)[0]['generated_text']
|
43 |
+
return recommendation
|
44 |
|
45 |
+
except Exception as e:
|
46 |
+
return f"Error: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|