aQuaBot / app.py
CamiloVega's picture
Rename app (4).py to app.py
1f5453e verified
raw
history blame
13.3 kB
import spaces
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import gradio as gr
import torch
import logging
import sys
import os
from accelerate import infer_auto_device_map, init_empty_weights
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Get HuggingFace token from environment variable
hf_token = os.environ.get('HUGGINGFACE_TOKEN')
if not hf_token:
logger.error("HUGGINGFACE_TOKEN environment variable not set")
raise ValueError("Please set the HUGGINGFACE_TOKEN environment variable")
# Define the model name
model_name = "meta-llama/Llama-2-7b-hf"
try:
logger.info("Starting model initialization...")
# Check CUDA availability
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device}")
# Configure PyTorch settings
if device == "cuda":
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# Load tokenizer
logger.info("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True,
token=hf_token
)
tokenizer.pad_token = tokenizer.eos_token
logger.info("Tokenizer loaded successfully")
# Load model with basic configuration
logger.info("Loading model...")
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
trust_remote_code=True,
token=hf_token,
device_map="auto"
)
logger.info("Model loaded successfully")
# Create pipeline
logger.info("Creating generation pipeline...")
model_gen = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=256,
do_sample=True,
temperature=0.7,
top_p=0.9,
repetition_penalty=1.1,
device_map="auto"
)
logger.info("Pipeline created successfully")
except Exception as e:
logger.error(f"Error during initialization: {str(e)}")
raise
# Configure system message
system_message = """You are a helpful AI assistant called AQuaBot. You provide direct, clear, and detailed answers to questions while being aware of environmental impact. Keep your responses natural and informative, but concise. Always provide context and explanations with your answers. Respond directly to questions without using any special tags or markers."""
@spaces.GPU(duration=60)
@torch.inference_mode()
def generate_response(user_input, chat_history):
try:
logger.info("Generating response for user input...")
global total_water_consumption
# Calculate water consumption for input
input_water_consumption = calculate_water_consumption(user_input, True)
total_water_consumption += input_water_consumption
# Create prompt with Llama 2 chat format
conversation_history = ""
if chat_history:
for message in chat_history:
# Remove any [INST] tags from the history
user_msg = message[0].replace("[INST]", "").replace("[/INST]", "").strip()
assistant_msg = message[1].replace("[INST]", "").replace("[/INST]", "").strip()
conversation_history += f"[INST] {user_msg} [/INST] {assistant_msg} "
prompt = f"<s>[INST] {system_message}\n\n{conversation_history}[INST] {user_input} [/INST]"
logger.info("Generating model response...")
outputs = model_gen(
prompt,
max_new_tokens=256,
return_full_text=False,
pad_token_id=tokenizer.eos_token_id,
do_sample=True,
temperature=0.7,
top_p=0.9,
repetition_penalty=1.1
)
logger.info("Model response generated successfully")
# Clean up the response by removing any [INST] tags and trimming
assistant_response = outputs[0]['generated_text'].strip()
assistant_response = assistant_response.replace("[INST]", "").replace("[/INST]", "").strip()
# If the response is too short, try to generate a more detailed one
if len(assistant_response.split()) < 10:
prompt += "\nPlease provide a more detailed answer with context and explanation."
outputs = model_gen(
prompt,
max_new_tokens=256,
return_full_text=False,
pad_token_id=tokenizer.eos_token_id,
do_sample=True,
temperature=0.7,
top_p=0.9,
repetition_penalty=1.1
)
assistant_response = outputs[0]['generated_text'].strip()
assistant_response = assistant_response.replace("[INST]", "").replace("[/INST]", "").strip()
# Calculate water consumption for output
output_water_consumption = calculate_water_consumption(assistant_response, False)
total_water_consumption += output_water_consumption
# Update chat history with the cleaned messages
chat_history.append([user_input, assistant_response])
# Prepare water consumption message
water_message = f"""
<div style="position: fixed; top: 20px; right: 20px;
background-color: white; padding: 15px;
border: 2px solid #ff0000; border-radius: 10px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
<div style="color: #ff0000; font-size: 24px; font-weight: bold;">
💧 {total_water_consumption:.4f} ml
</div>
<div style="color: #666; font-size: 14px;">
Water Consumed
</div>
</div>
"""
return chat_history, water_message
except Exception as e:
logger.error(f"Error in generate_response: {str(e)}")
error_message = f"An error occurred: {str(e)}"
chat_history.append([user_input, error_message])
return chat_history, show_water
# Constants for water consumption calculation
WATER_PER_TOKEN = {
"input_training": 0.0000309,
"output_training": 0.0000309,
"input_inference": 0.05,
"output_inference": 0.05
}
# Initialize variables
total_water_consumption = 0
def calculate_tokens(text):
try:
return len(tokenizer.encode(text))
except Exception as e:
logger.error(f"Error calculating tokens: {str(e)}")
return len(text.split()) + len(text) // 4 # Fallback to approximation
def calculate_water_consumption(text, is_input=True):
tokens = calculate_tokens(text)
if is_input:
return tokens * (WATER_PER_TOKEN["input_training"] + WATER_PER_TOKEN["input_inference"])
return tokens * (WATER_PER_TOKEN["output_training"] + WATER_PER_TOKEN["output_inference"])
def format_message(role, content):
return {"role": role, "content": content}
@spaces.GPU(duration=60)
@torch.inference_mode()
def generate_response(user_input, chat_history):
try:
logger.info("Generating response for user input...")
global total_water_consumption
# Calculate water consumption for input
input_water_consumption = calculate_water_consumption(user_input, True)
total_water_consumption += input_water_consumption
# Create prompt with Llama 2 chat format
conversation_history = ""
if chat_history:
for message in chat_history:
conversation_history += f"[INST] {message[0]} [/INST] {message[1]} "
prompt = f"<s>[INST] {system_message}\n\n{conversation_history}[INST] {user_input} [/INST]"
logger.info("Generating model response...")
outputs = model_gen(
prompt,
max_new_tokens=256,
return_full_text=False,
pad_token_id=tokenizer.eos_token_id,
)
logger.info("Model response generated successfully")
assistant_response = outputs[0]['generated_text'].strip()
# Calculate water consumption for output
output_water_consumption = calculate_water_consumption(assistant_response, False)
total_water_consumption += output_water_consumption
# Update chat history with the new formatted messages
chat_history.append([user_input, assistant_response])
# Prepare water consumption message
water_message = f"""
<div style="position: fixed; top: 20px; right: 20px;
background-color: white; padding: 15px;
border: 2px solid #ff0000; border-radius: 10px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
<div style="color: #ff0000; font-size: 24px; font-weight: bold;">
💧 {total_water_consumption:.4f} ml
</div>
<div style="color: #666; font-size: 14px;">
Water Consumed
</div>
</div>
"""
return chat_history, water_message
except Exception as e:
logger.error(f"Error in generate_response: {str(e)}")
error_message = f"An error occurred: {str(e)}"
chat_history.append([user_input, error_message])
return chat_history, show_water
# Create Gradio interface
try:
logger.info("Creating Gradio interface...")
with gr.Blocks(css="div.gradio-container {background-color: #f0f2f6}") as demo:
gr.HTML("""
<div style="text-align: center; max-width: 800px; margin: 0 auto; padding: 20px;">
<h1 style="color: #2d333a;">AQuaBot</h1>
<p style="color: #4a5568;">
Welcome to AQuaBot - An AI assistant that helps raise awareness
about water consumption in language models.
</p>
</div>
""")
chatbot = gr.Chatbot()
message = gr.Textbox(
placeholder="Type your message here...",
show_label=False
)
show_water = gr.HTML(f"""
<div style="position: fixed; top: 20px; right: 20px;
background-color: white; padding: 15px;
border: 2px solid #ff0000; border-radius: 10px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
<div style="color: #ff0000; font-size: 24px; font-weight: bold;">
💧 0.0000 ml
</div>
<div style="color: #666; font-size: 14px;">
Water Consumed
</div>
</div>
""")
clear = gr.Button("Clear Chat")
# Add footer with citation and disclaimer
gr.HTML("""
<div style="text-align: center; max-width: 800px; margin: 20px auto; padding: 20px;
background-color: #f8f9fa; border-radius: 10px;">
<div style="margin-bottom: 15px;">
<p style="color: #666; font-size: 14px; font-style: italic;">
Water consumption calculations are based on the study:<br>
Li, P. et al. (2023). Making AI Less Thirsty: Uncovering and Addressing the Secret Water
Footprint of AI Models. ArXiv Preprint,
<a href="https://arxiv.org/abs/2304.03271" target="_blank">https://arxiv.org/abs/2304.03271</a>
</p>
</div>
<div style="border-top: 1px solid #ddd; padding-top: 15px;">
<p style="color: #666; font-size: 14px;">
<strong>Important note:</strong> This application uses Meta Llama-2-7b model
instead of GPT-3 for availability and cost reasons. However,
the water consumption calculations per token (input/output) are based on the
conclusions from the cited paper.
</p>
</div>
</div>
""")
def submit(user_input, chat_history):
return generate_response(user_input, chat_history)
# Configure event handlers
message.submit(submit, [message, chatbot], [chatbot, show_water])
clear.click(
lambda: ([], f"""
<div style="position: fixed; top: 20px; right: 20px;
background-color: white; padding: 15px;
border: 2px solid #ff0000; border-radius: 10px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
<div style="color: #ff0000; font-size: 24px; font-weight: bold;">
💧 0.0000 ml
</div>
<div style="color: #666; font-size: 14px;">
Water Consumed
</div>
</div>
"""),
None,
[chatbot, show_water]
)
logger.info("Gradio interface created successfully")
# Launch the application
logger.info("Launching application...")
demo.launch()
except Exception as e:
logger.error(f"Error in Gradio interface creation: {str(e)}")
raise