File size: 5,194 Bytes
92feab2
 
 
 
 
a0e37e2
 
92feab2
a0e37e2
 
92feab2
a0e37e2
 
 
 
 
92feab2
 
a0e37e2
 
92feab2
 
 
 
 
 
 
 
 
a0e37e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92feab2
 
 
a0e37e2
 
92feab2
 
 
 
 
 
a0e37e2
 
92feab2
 
 
 
a0e37e2
 
e867f4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92feab2
 
 
 
 
a0e37e2
 
 
 
 
 
 
92feab2
 
a0e37e2
 
 
 
 
 
92feab2
 
 
 
a0e37e2
92feab2
a0e37e2
92feab2
 
a0e37e2
92feab2
 
 
 
 
 
a0e37e2
92feab2
 
 
 
 
 
 
 
a0e37e2
 
92feab2
 
a0e37e2
92feab2
 
 
a0e37e2
 
 
 
 
 
 
 
 
92feab2
a0e37e2
 
 
 
 
92feab2
a0e37e2
 
 
 
 
190ec72
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from typing import List, Tuple, Dict, TypedDict, Optional, Any
import os

import gradio as gr

from langchain_core.language_models.llms import LLM

from langchain_openai.chat_models import ChatOpenAI
from langchain_aws import ChatBedrock
import boto3

from ask_candid.base.config.rest import OPENAI
from ask_candid.base.config.models import Name2Endpoint
from ask_candid.base.config.data import ALL_INDICES
from ask_candid.utils import format_chat_ag_response
from ask_candid.chat import run_chat

ROOT = os.path.dirname(os.path.abspath(__file__))
BUCKET = "candid-data-science-reporting"
PREFIX = "Assistant"

class LoggedComponents(TypedDict):
    context: List[gr.components.Component]
    found_helpful: gr.components.Component
    will_recommend: gr.components.Component
    comments: gr.components.Component
    email: gr.components.Component


def select_foundation_model(model_name: str, max_new_tokens: int) -> LLM:
    if model_name == "gpt-4o":
        llm = ChatOpenAI(
            model_name=Name2Endpoint[model_name],
            max_tokens=max_new_tokens,
            api_key=OPENAI["key"],
            temperature=0.0,
            streaming=True,
        )
    elif model_name in {"claude-3.5-haiku", "llama-3.1-70b-instruct", "mistral-large", "mixtral-8x7B"}:
        llm = ChatBedrock(
            client=boto3.client("bedrock-runtime"),
            model=Name2Endpoint[model_name],
            max_tokens=max_new_tokens,
            temperature=0.0
        )
    else:
        raise gr.Error(f"Base model `{model_name}` is not supported")
    return llm


def execute(
    thread_id: str,
    user_input: Dict[str, Any],
    history: List[Dict],
    model_name: str,
    max_new_tokens: int,
    indices: Optional[List[str]] = None,
):
    return run_chat(
        thread_id=thread_id,
        user_input=user_input,
        history=history,
        llm=select_foundation_model(model_name=model_name, max_new_tokens=max_new_tokens),
        indices=indices
    )


def build_rag_chat() -> Tuple[LoggedComponents, gr.Blocks]:
    with gr.Blocks(theme=gr.themes.Soft(), title="Chat") as demo:

        gr.Markdown(
            """
            <h1>Ask Candid</h1>

            <p>
                Please read the <a
                    href='https://info.candid.org/chatbot-reference-guide'
                    target="_blank"
                    rel="noopener noreferrer"
                >guide</a> to get started.
            </p>
            <hr>
            """
        )

        with gr.Accordion(label="Advanced settings", open=False):
            es_indices = gr.CheckboxGroup(
                choices=list(ALL_INDICES),
                value=list(ALL_INDICES),
                label="Sources to include",
                interactive=True,
            )
            llmname = gr.Radio(
                label="Language model",
                value="gpt-4o",
                choices=list(Name2Endpoint.keys()),
                interactive=True,
            )
            max_new_tokens = gr.Slider(
                value=256 * 3,
                minimum=128,
                maximum=2048,
                step=128,
                label="Max new tokens",
                interactive=True,
            )

        with gr.Column():
            chatbot = gr.Chatbot(
                label="AskCandid",
                elem_id="chatbot",
                bubble_full_width=True,
                avatar_images=(
                    None,
                    os.path.join(ROOT, "static", "candid_logo_yellow.png"),
                ),
                height="45vh",
                type="messages",
                show_label=False,
                show_copy_button=True,
                show_share_button=True,
                show_copy_all_button=True,
            )
            msg = gr.MultimodalTextbox(label="Your message", interactive=True)
            thread_id = gr.Text(visible=False, value="", label="thread_id")
            gr.ClearButton(components=[msg, chatbot, thread_id], size="sm")

        # pylint: disable=no-member
        chat_msg = msg.submit(
            fn=execute,
            inputs=[thread_id, msg, chatbot, llmname, max_new_tokens, es_indices],
            outputs=[msg, chatbot, thread_id],
        )
        chat_msg.then(format_chat_ag_response, chatbot, chatbot, api_name="bot_response")
        logged = LoggedComponents(context=[thread_id, chatbot])
    return logged, demo


def build_app():
    _, candid_chat = build_rag_chat()

    with open(os.path.join(ROOT, "static", "chatStyle.css"), "r", encoding="utf8") as f:
        css_chat = f.read()

    demo = gr.TabbedInterface(
        interface_list=[
            candid_chat,
        ],
        tab_names=[
            "AskCandid",
        ],
        theme=gr.themes.Soft(),
        css=css_chat,
    )
    return demo


if __name__ == "__main__":
    app = build_app()
    app.queue(max_size=5).launch(
        show_api=False,
        auth=[
            (os.getenv("APP_USERNAME"), os.getenv("APP_PASSWORD")),
            (os.getenv("APP_PUBLIC_USERNAME"), os.getenv("APP_PUBLIC_PASSWORD")),
        ],
        auth_message="Login to Candid's AI assistant",
        ssr_mode=False
    )