File size: 3,862 Bytes
92feab2
 
 
 
 
 
 
 
 
 
1cf6b9d
92feab2
 
 
 
1cf6b9d
92feab2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cf6b9d
e867f4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92feab2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from typing import List, Tuple, Dict, TypedDict, Optional, Any
import os

import gradio as gr

from langchain_openai.chat_models import ChatOpenAI

try:
    from utils import format_chat_ag_response
    from retrieval.config import ALL_INDICES
    from static.css import css_chat
    from chat import run_chat
except ImportError:
    from .utils import format_chat_ag_response
    from .retrieval.config import ALL_INDICES
    from .static.css import css_chat
    from .chat import run_chat

ROOT = os.path.dirname(os.path.abspath(__file__))


class LoggedComponents(TypedDict):
    context: List[gr.components.Component]
    found_helpful: gr.components.Component
    will_recommend: gr.components.Component
    comments: gr.components.Component
    email: gr.components.Component


def execute(
    thread_id: str,
    user_input: Dict[str, Any],
    chatbot: List[Dict],
    max_new_tokens: int,
    indices: Optional[List[str]] = None,
):
    llm = ChatOpenAI(
        model_name="gpt-4o",
        max_tokens=max_new_tokens,
        api_key=os.getenv("OPENAI_API_KEY"),
        temperature=0.0,
        streaming=True
    )

    return run_chat(
        thread_id=thread_id,
        user_input=user_input,
        chatbot=chatbot,
        llm=llm,
        indices=indices
    )


def build_chat() -> Tuple[LoggedComponents, gr.Blocks]:
    with gr.Blocks(theme=gr.themes.Soft(), title="Ask Candid", css=css_chat) as demo:

        gr.Markdown(
            """
            <h1>Ask Candid</h1>

            <p>
                Please read the <a
                    href='https://info.candid.org/chatbot-reference-guide'
                    target="_blank"
                    rel="noopener noreferrer"
                >guide</a> to get started.
            </p>
            <hr>
            """
        )

        with gr.Accordion(label="Advanced settings", open=False):
            es_indices = gr.CheckboxGroup(
                choices=list(ALL_INDICES),
                value=list(ALL_INDICES),
                label="Sources to include",
                interactive=True
            )
            max_new_tokens = gr.Slider(
                value=256 * 3, minimum=128, maximum=2048, step=128,
                label="Max new tokens", interactive=True
            )

        with gr.Column():
            chatbot = gr.Chatbot(
                label="Candid Assistant",
                elem_id="chatbot",
                bubble_full_width=False,
                avatar_images=(
                    None,
                    os.path.join(ROOT, "static", "candid_logo_yellow.png")
                ),
                height="45vh",
                type="messages",
                show_label=False,
                show_copy_button=True,
                show_share_button=True,
                show_copy_all_button=True
            )
            msg = gr.MultimodalTextbox(label="Your message", interactive=True)
            thread_id = gr.Text(visible=False, value="", label="thread_id")
            gr.ClearButton(components=[msg, chatbot, thread_id], size="sm")

        # pylint: disable=no-member
        chat_msg = msg.submit(
            fn=execute,
            inputs=[thread_id, msg, chatbot, max_new_tokens, es_indices],
            outputs=[msg, chatbot, thread_id]
        )
        chat_msg.then(format_chat_ag_response, chatbot, chatbot, api_name="bot_response")
        logged = LoggedComponents(
            context=[thread_id, chatbot]
        )
    return logged, demo


if __name__ == '__main__':
    _, app = build_chat()
    app.queue(max_size=5).launch(
        show_api=False,
        auth=[
            (os.getenv("APP_USERNAME"), os.getenv("APP_PASSWORD")),
            (os.getenv("APP_PUBLIC_USERNAME"), os.getenv("APP_PUBLIC_PASSWORD")),
        ],
        auth_message="Login to Candid's AI assistant",
        ssr_mode=False
    )