File size: 12,341 Bytes
bea5044
 
 
 
 
 
 
 
 
 
 
f86d7f2
 
 
 
 
 
 
 
bea5044
 
cc80c3d
bea5044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc80c3d
 
 
 
 
 
 
 
 
 
 
 
bea5044
 
 
f86d7f2
bea5044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc80c3d
bea5044
 
 
 
 
 
cc80c3d
bea5044
 
 
 
 
 
cc80c3d
bea5044
 
 
 
cc80c3d
 
bea5044
 
cc80c3d
bea5044
 
 
 
 
cc80c3d
bea5044
f86d7f2
cc80c3d
bea5044
cc80c3d
 
f86d7f2
cc80c3d
bea5044
cc80c3d
bea5044
f86d7f2
cc80c3d
bea5044
cc80c3d
bea5044
f86d7f2
cc80c3d
bea5044
cc80c3d
bea5044
f86d7f2
cc80c3d
 
 
 
 
bea5044
cc80c3d
bea5044
 
 
 
cc80c3d
bea5044
 
 
 
 
 
 
 
 
 
 
 
 
cc80c3d
 
 
f86d7f2
 
 
 
 
 
cc80c3d
 
 
 
 
f86d7f2
cc80c3d
 
bea5044
 
 
 
 
 
 
 
 
cc80c3d
 
 
 
bea5044
 
 
 
 
cc80c3d
bea5044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc80c3d
 
bea5044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f86d7f2
 
 
 
bea5044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f86d7f2
2744d22
bea5044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f86d7f2
 
 
 
 
bea5044
f86d7f2
bea5044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f86d7f2
bea5044
f86d7f2
bea5044
f86d7f2
bea5044
f86d7f2
bea5044
f86d7f2
bea5044
f86d7f2
bea5044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
from typing import List, Tuple, Dict, Iterable, Iterator, Optional, Union, Any
from itertools import groupby

from torch.nn import functional as F

from pydantic import BaseModel, Field
from langchain_core.documents import Document

from elasticsearch import Elasticsearch

from ask_candid.retrieval.sparse_lexical import SpladeEncoder
from ask_candid.retrieval.sources.schema import ElasticHitsResult
from ask_candid.retrieval.sources.issuelab import IssueLabConfig, process_issuelab_hit
from ask_candid.retrieval.sources.youtube import YoutubeConfig, process_youtube_hit
from ask_candid.retrieval.sources.candid_blog import CandidBlogConfig, process_blog_hit
from ask_candid.retrieval.sources.candid_learning import CandidLearningConfig, process_learning_hit
from ask_candid.retrieval.sources.candid_help import CandidHelpConfig, process_help_hit
from ask_candid.retrieval.sources.candid_news import CandidNewsConfig, process_news_hit

from ask_candid.services.small_lm import CandidSLM
from ask_candid.base.config.connections import SEMANTIC_ELASTIC_QA, NEWS_ELASTIC
from ask_candid.base.config.data import DataIndices, ALL_INDICES

encoder = SpladeEncoder()


class RetrieverInput(BaseModel):
    """Input to the Elasticsearch retriever."""
    user_input: str = Field(description="query to look up in retriever")


def build_sparse_vector_query(
    query: str,
    fields: Tuple[str],
    inference_id: str = ".elser-2-elasticsearch"
) -> Dict[str, Any]:
    """Builds a valid Elasticsearch text expansion query payload

    Parameters
    ----------
    query : str
        Search context string
    fields : Tuple[str]
        Semantic text field names
    inference_id : str, optional
        ID of model deployed in Elasticsearch, by default ".elser-2-elasticsearch"

    Returns
    -------
    Dict[str, Any]
    """

    output = []

    for f in fields:
        output.append({
            "nested": {
                "path": f"embeddings.{f}.chunks",
                "query": {
                    "sparse_vector": {
                        "field": f"embeddings.{f}.chunks.vector",
                        "inference_id": inference_id,
                        "prune": True,
                        "query": query,
                        "boost": 1 / len(fields)
                    }
                },
                "inner_hits": {
                    "_source": False,
                    "size": 2,
                    "fields": [f"embeddings.{f}.chunks.chunk"]
                }
            }
        })
    return {"query": {"bool": {"should": output}}}


def news_query_builder(query: str) -> Dict[str, Any]:
    """Builds a valid Elasticsearch query against Candid news, simulating a token expansion.

    Parameters
    ----------
    query : str
        Search context string

    Returns
    -------
    Dict[str, Any]
    """

    tokens = encoder.token_expand(query)

    query = {
        "_source": ["id", "link", "title", "content", "site_name"],
        "query": {
            "bool": {
                "filter": [
                    {"range": {"event_date": {"gte": "now-60d/d"}}},
                    {"range": {"insert_date": {"gte": "now-60d/d"}}},
                    {"range": {"article_trust_worthiness": {"gt": 0.8}}}
                ],
                "should": []
            }
        }
    }

    for token, score in tokens.items():
        if score > 0.4:
            query["query"]["bool"]["should"].append({
                "multi_match": {
                    "query": token,
                    "fields": CandidNewsConfig.text_fields,
                    "boost": score
                }
            })
    return query


def query_builder(query: str, indices: List[DataIndices]) -> Tuple[List[Dict[str, Any]], List[Dict[str, Any]]]:
    """Builds Elasticsearch multi-search query payload

    Parameters
    ----------
    query : str
        Search context string
    indices : List[DataIndices]
        Semantic index names to search over

    Returns
    -------
    Tuple[List[Dict[str, Any]], List[Dict[str, Any]]]
        (semantic index queries, news queries)
    """

    queries, news_queries = [], []
    if indices is None:
        indices = list(ALL_INDICES)

    for index in indices:
        if index == "issuelab":
            q = build_sparse_vector_query(query=query, fields=IssueLabConfig.text_fields)
            q["_source"] = {"excludes": ["embeddings"]}
            q["size"] = 2
            queries.extend([{"index": IssueLabConfig.index_name}, q])
        elif index == "youtube":
            q = build_sparse_vector_query(query=query, fields=YoutubeConfig.text_fields)
            q["_source"] = {"excludes": ["embeddings", *YoutubeConfig.excluded_fields]}
            q["size"] = 5
            queries.extend([{"index": YoutubeConfig.index_name}, q])
        elif index == "candid_blog":
            q = build_sparse_vector_query(query=query, fields=CandidBlogConfig.text_fields)
            q["_source"] = {"excludes": ["embeddings"]}
            q["size"] = 5
            queries.extend([{"index": CandidBlogConfig.index_name}, q])
        elif index == "candid_learning":
            q = build_sparse_vector_query(query=query, fields=CandidLearningConfig.text_fields)
            q["_source"] = {"excludes": ["embeddings"]}
            q["size"] = 5
            queries.extend([{"index": CandidLearningConfig.index_name}, q])
        elif index == "candid_help":
            q = build_sparse_vector_query(query=query, fields=CandidHelpConfig.text_fields)
            q["_source"] = {"excludes": ["embeddings"]}
            q["size"] = 5
            queries.extend([{"index": CandidHelpConfig.index_name}, q])
        elif index == "news":
            q = news_query_builder(query=query)
            q["size"] = 5
            news_queries.extend([{"index": CandidNewsConfig.index_name}, q])

    return queries, news_queries


def multi_search(
    queries: List[Dict[str, Any]],
    news_queries: Optional[List[Dict[str, Any]]] = None
) -> List[ElasticHitsResult]:
    """Runs multi-search query

    Parameters
    ----------
    queries : List[Dict[str, Any]]
        Pre-built multi-search query payload

    Returns
    -------
    List[ElasticHitsResult]
    """

    def _msearch_response_generator(responses: List[Dict[str, Any]]) -> Iterator[ElasticHitsResult]:
        for query_group in responses:
            for h in query_group.get("hits", {}).get("hits", []):
                inner_hits = h.get("inner_hits", {})

                if not inner_hits:
                    if "news" in h.get("_index"):
                        inner_hits = {"text": h.get("_source", {}).get("content")}

                yield ElasticHitsResult(
                    index=h["_index"],
                    id=h["_id"],
                    score=h["_score"],
                    source=h["_source"],
                    inner_hits=inner_hits
                )

    results = []

    if len(queries) > 0:
        with Elasticsearch(
            cloud_id=SEMANTIC_ELASTIC_QA.cloud_id,
            api_key=SEMANTIC_ELASTIC_QA.api_key,
            verify_certs=False,
            request_timeout=60 * 3
        ) as es:
            for hit in _msearch_response_generator(es.msearch(body=queries).get("responses", [])):
                results.append(hit)

    if news_queries is not None and len(news_queries):
        with Elasticsearch(
            NEWS_ELASTIC.url,
            http_auth=(NEWS_ELASTIC.username, NEWS_ELASTIC.password),
            timeout=60
        ) as es:
            for hit in _msearch_response_generator(es.msearch(body=news_queries).get("responses", [])):
                results.append(hit)
    return results


def get_query_results(search_text: str, indices: Optional[List[str]] = None) -> List[ElasticHitsResult]:
    """Builds and executes Elasticsearch data queries from a search string.

    Parameters
    ----------
    search_text : str
        Search context string
    indices : Optional[List[str]], optional
        Semantic index names to search over, by default None

    Returns
    -------
    List[ElasticHitsResult]
    """

    queries, news_q = query_builder(query=search_text, indices=indices)
    return multi_search(queries, news_queries=news_q)


def retrieved_text(hits: Dict[str, Any]) -> str:
    """Extracts retrieved sub-texts from documents which are strong hits from semantic queries for the purpose of
    re-scoring by a secondary language model.

    Parameters
    ----------
    hits : Dict[str, Any]

    Returns
    -------
    str
    """

    text = []
    for _, v in hits.items():
        if _ == "text":
            text.append(v)
            continue

        for h in (v.get("hits", {}).get("hits") or []):
            for _, field in h.get("fields", {}).items():
                for chunk in field:
                    if chunk.get("chunk"):
                        text.extend(chunk["chunk"])
    return '\n'.join(text)


def cosine_rescore(query: str, contexts: List[str]) -> List[float]:
    """Computes cosine scores between retrieved contexts and the original query to re-score results based on overall
    relevance to the original query.

    Parameters
    ----------
    query : str
        Search context string
    contexts : List[str]
        Semantic field sub-texts, order is by document retrieved from the original multi-search query.

    Returns
    -------
    List[float]
        Scores in the same order as the input document contexts
    """

    nlp = CandidSLM()
    X = nlp.encode([query, *contexts]).vectors
    X = F.normalize(X, dim=-1, p=2.)
    cosine = X[1:] @ X[:1].T
    return cosine.flatten().cpu().numpy().tolist()


def reranker(
    query_results: Iterable[ElasticHitsResult],
    search_text: Optional[str] = None,
    max_num_results: int = 5
) -> Iterator[ElasticHitsResult]:
    """Reranks Elasticsearch hits coming from multiple indices/queries which may have scores on different scales.
    This will shuffle results

    Parameters
    ----------
    query_results : Iterable[ElasticHitsResult]

    Yields
    ------
    Iterator[ElasticHitsResult]
    """

    results: List[ElasticHitsResult] = []
    texts: List[str] = []
    for _, data in groupby(query_results, key=lambda x: x.index):
        data = list(data)
        max_score = max(data, key=lambda x: x.score).score
        min_score = min(data, key=lambda x: x.score).score

        for d in data:
            d.score = (d.score - min_score) / (max_score - min_score + 1e-9)
            results.append(d)

            if search_text:
                text = retrieved_text(d.inner_hits)
                texts.append(text)

    if search_text and len(texts) == len(results):
        # scores = cosine_rescore(search_text, texts)
        scores = encoder.query_reranking(query=search_text, documents=texts)
        for r, s in zip(results, scores):
            r.score = s

    yield from sorted(results, key=lambda x: x.score, reverse=True)[:max_num_results]


def process_hit(hit: ElasticHitsResult) -> Union[Document, None]:
    """Parse Elasticsearch hit results into data structures handled by the RAG pipeline.

    Parameters
    ----------
    hit : ElasticHitsResult

    Returns
    -------
    Union[Document, None]
    """

    if "issuelab-elser" in hit.index:
        doc = process_issuelab_hit(hit)
    elif "youtube" in hit.index:
        doc = process_youtube_hit(hit)
    elif "candid-blog" in hit.index:
        doc = process_blog_hit(hit)
    elif "candid-learning" in hit.index:
        doc = process_learning_hit(hit)
    elif "candid-help" in hit.index:
        doc = process_help_hit(hit)
    elif "news" in hit.index:
        doc = process_news_hit(hit)
    else:
        doc = None
    return doc


def get_reranked_results(results: List[ElasticHitsResult], search_text: Optional[str] = None) -> List[Document]:
    """Run data re-ranking and document building for tool usage.

    Parameters
    ----------
    results : List[ElasticHitsResult]
    search_text : Optional[str], optional
        Search context string, by default None

    Returns
    -------
    List[Document]
    """

    output = []
    for r in reranker(results, search_text=search_text):
        hit = process_hit(r)
        if hit is not None:
            output.append(hit)
    return output