File size: 10,003 Bytes
924d75b
 
 
 
 
 
 
 
 
782cff8
924d75b
 
 
 
 
 
 
 
 
782cff8
 
924d75b
 
 
 
782cff8
924d75b
 
af0c0fa
 
 
 
 
 
924d75b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
782cff8
924d75b
 
 
 
 
 
 
af0c0fa
 
924d75b
782cff8
924d75b
af0c0fa
924d75b
 
 
 
 
 
 
 
 
 
 
af0c0fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Python's OS interface for accessing environment variables
import os
# Intropesction utilities, you can auto-wrap it as a tool later.
import inspect
# HTTP client, Make REST calls for endpoints
import requests
# Parses CSV/Excel files
import pandas as pd 
# Gradio - Provides the web format front-end you see in the Space-text boxes, logs, "Run Agent" button etc.
import gradio as gr
# smolagent - minimalist agent framework for LLMs with tools
# CodeAgent - Orchestrate ReAct loop, logs each step
# Tool - a base class and a decorator (@tool)
# InferenceClientModel - Wrapper for HF's Serverless Inference API so you dont need to stand up your own TGI/LLM endpoint
from smolagents import CodeAgent, DuckDuckGoSearchTool, Tool, InferenceClientModel
# Programmatic huggingface-cli login, so the app can: pull private models, call paid-tier inference, push artefacts
from huggingface_hub import login
# Quick helper to pull LangChain's built-in tools so you can blend them with smolagent tools if you wish.
from langchain.agents import load_tools


# Configuration constant
# Unit-4 scoring micro-services where your agent submits answers and receivess a JSON score.
# --- Constants
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Basic Agent Definition ---
# ---- THIS IS WHERE YOU CAN BUILD WHAT YOU WANT ----
# This class is a ready-to-run wrapper that:
# 1. Authenticates to the Hub
# 2. Spins up a server-side Qwen-32B LLM.
# 3. Gives it a DuckDuckGo search plug-in plus smolagents' standard library
# 4. Primes it with strict grading instructions.
# 5. Exposes a clean, callable interface for what  ever frontend(Gradio, FastAPI, etc.) you bolt on.
class BasicAgent:
    def __init__(self):
        # Pull a HF access token from the Space's secrets or your local shell. You can download private models, call paid-tier Inference endpoints, push artefacts
        hf_token = os.getenv("HUGGINGFACE_HUB_TOKEN") or os.getenv("HF_TOKEN")
        # IF IT WORKS LOGIN INTO HF HUB VIA THIS TOKEN
        if hf_token:
            login(token=hf_token)
        else:
            try:
                login()
            except Exception as e:
                raise Exception(
                    # helpful, course-style message
                    "Authentication failed. Please enter:\n"
                    "1. Run 'huggingface-cli login' in your terminal, or\n"
                    "2. Set HUGGINGFACE_HUB_TOKEN environment variable with your token, or\n"
                    "3. Get a token from https://huggingface.co/settings/tokens"
                ) from e
    
    # Warps the servesless inference endpoint for the chosen model
    # Initialize the model
    # InferenceClientModel handles throttling, batching, and streaming under the hood
    self.model = InferenceClientModel("Qwen/Qwen2.5-Code-32B-Instruct")
    
    # Add a first tool
    # Initialize the search tool
    # DuckDuckGoSearchTool - Gives the agent web-search super-powers it can pull fresh facts during its reasoning loop.
    self.search_tool = DuckDuckGoSearchTool()

    # smolagents's flagship class - 
    # Code Agent follows a ReAct-style loop, literally write Python code, executes it in a sandbox, inspects the result, then decides its next step
    self.agent = CodeAgent(
        model=self.model,
        tools=[self.search_tool],
        # drops in a small standard library (Python REPL, JSON loader etc.) so you can solve many tasks without defining anything else.
        add_base_tools=True # - python_repl, browser, math etc.
        # CodeAgent's auto_document_tools convenience flag 
        auto_document_tools=True
    )

    # Send a single "bootstrap" run whose only job is lock in behaviour rules:
    # The returned text is captured in self.responses.
    self.response = self.agent.run(
        """
        You are a general AI assistant.
        I will ask you a question. Report your thoughts, and finish your answer with the following template: [FINAL ANSWER].
        YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
        If you are asked for a number, do not use comma to write your number neither use units such as $ or percent sign unless specified otherwise. 
        If you are asked for a string, do not use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.
        If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string. 
        You have access to the following tools:
        Tool Name: search_tool, description:  lets you search and browse the internet for accessing the most updated information out there.
        If you require more tools to get a correct answer, create your own tools to utilize.    
        """)
    # Turning BasicAgent into a callable object 
    # It means you can drop it straight into Gradio (or any other framework) without wrapping it in a standalone function.
    # Debug prints show the round-trip in the server logs.
    def __call__(self, question: str) -> str:
        print(f"Agent received question:")
        response = self.agent.run(question)
        # the reply is generated on-the-fly, not hard coded.
        print(f"Agent returning answer: {response}")
        return response

# 1. Check if the user is logged in
# 2. Download questions from a grading API.
# 3. Use the BasicAgent to generate answers
# 4. Submit those answers back to the API.
# 5. Return the grading results + a full log for UI display (e.g. Gradio Table)
# Includes detailed logging, robust error handling, and submission payload formatting
def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers, and display the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    # Authenticate user and runtime info
    # Grabbing space_id from the environment lets the app dynamically construct a URL to your codebase.
    # This will be included in the submission for transparency (important in peer-review courses.)
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    # If the gradio OAuth profile object is present, extract the username.
    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    # Otherwise, early exit with a friendly error message
    else:
        print("User not logged in.")
        return "Please login to Hugging Face with the button.",None

    # --- PrePare API endpoints ---
    # Uses the provided scoring end point (defaulting to the course's hosted  backen)
    # Constucts two URLs:
    api_url = DEFAULT_API_URL
    # URL to Fetch the question bank.
    question_url = f"{api_url}/questions"
    # URL to POST answers for grading
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent ( modify this part to create your agent)
    # Tries to spin up your BasicAgent class from earlier.
    # Includes token validation, model loading, tool setup, and system prompt injection.
    # If this fails, the app gracefully exits, returning a user-visible error.
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initialiazing agent: {e}", None

    # In the case of an app running as a HF space, this link points toward your codebase 
    # (usefull for others so please keep it public)
    # Builds a link to your code repor on HF Hub (public space)
    agent_code =  f"https://huggingface.co/spaces/{space_id}/tree/main"
    # Gets submitted with the answers for transparacey
    print(agent_code)

    # 2. Fetch Questions
    # --- FETCH QUESTIONS FROM THE BACKEND ---
    print(f"Fetching questions from: {questions_url}")
    # Tries to GET the questions from the course's scoring server
    try:
        # Timout and error handling ensure the app does not hang or crash.
        
        response = requests.get(requests, timeout=15)
        questions_data = response.json()
        # handles edge cases like empty response, malformed JSON, network Errors
        # Empty response handling
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(question_data) questions.}")
    except requests.exceptions,RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except reqests.exceptions.JSONDecodeError as e:
        print(f"Error decoding JSON response from questions endpoint: {e}")
        print(f"Response text: {response.text[:500]}")
        return f"Error decoding server response for questions: {e}, None"
    except Exception as e: 
        print(f"An unexpected error occured fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None
    # 3. Run your agent.
    # Loop through questions and generate answers
    results_log = [] # Used to make a DataFrame for UI display (question + answer)
    answers_payload = [] # sent to grading API in the final submission

    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try: 
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submmitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
            print(f"Erron running agent on task {task_id}: {e}")
            results_log.append