Spaces:
Running
Running
import tensorflow as tf | |
tf.config.set_visible_devices([], 'GPU') | |
import os | |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' | |
import gradio as gr | |
import numpy as np | |
from tensorflow.keras.preprocessing import image | |
from fastapi import FastAPI, File, UploadFile | |
from fastapi.responses import JSONResponse | |
from fastapi.middleware.cors import CORSMiddleware | |
from io import BytesIO | |
from PIL import Image | |
import logging | |
from tensorflow.keras.models import load_model, model_from_json | |
from tensorflow.keras import mixed_precision | |
from tensorflow.keras.saving import get_custom_objects, register_keras_serializable | |
from tensorflow.keras.mixed_precision import Policy | |
# Import deskripsi dan lokasi | |
from description import description | |
from location import location | |
# @register_keras_serializable(package="keras") | |
# class DTypePolicy(Policy): | |
# pass | |
# from tensorflow.keras.saving import get_custom_objects | |
# get_custom_objects()["DTypePolicy"] = DTypePolicy | |
# Nonaktifkan GPU (jika tidak digunakan) | |
tf.config.set_visible_devices([], 'GPU') | |
# Inisialisasi logger | |
# logging.basicConfig(level=logging.INFO) | |
# logger = logging.getLogger(__name__) | |
# ========== Fungsi Load Model dari File JSON + H5 ========== | |
def load_model_from_file(json_path, h5_path): | |
with open(json_path, "r") as f: | |
json_config = f.read() | |
model = model_from_json(json_config) | |
model.load_weights(h5_path) | |
return model | |
# ========== Load Model ========== | |
model = load_model_from_file("model.json", "my_model.h5") | |
# Daftar label | |
labels = [ | |
"Benteng Vredeburg", "Candi Borobudur", "Candi Prambanan", "Gedung Agung Istana Kepresidenan", | |
"Masjid Gedhe Kauman", "Monumen Serangan 1 Maret", "Museum Gunungapi Merapi", | |
"Situs Ratu Boko", "Taman Sari", "Tugu Yogyakarta" | |
] | |
# Fungsi klasifikasi | |
def classify_image(img): | |
try: | |
img = img.resize((224, 224)) | |
img_array = image.img_to_array(img) | |
img_array = np.expand_dims(img_array, axis=0) | |
img_array = img_array / 255.0 | |
pred = model.predict(img_array)[0] | |
confidence = np.max(pred) | |
predicted_label = labels[np.argmax(pred)] | |
akurasi = float(confidence) | |
if confidence < 0.8: | |
label_output = "Tidak dapat dikenali (Confidence: {:.2f}%)".format(confidence * 100) | |
deskripsi = ( | |
"Tolong arahkan ke objek yang jelas agar bisa diidentifikasikan. " | |
"Pastikan anda berada di salah satu tempat seperti:\n" | |
"- Benteng Vredeburg\n- Candi Borobudur\n- Candi Prambanan\n" | |
"- Gedung Agung Istana Kepresidenan Yogyakarta\n- Masjid Gedhe Kauman\n" | |
"- Monumen Serangan 1 Maret\n- Museum Gunungapi Merapi\n- Situs Ratu Boko\n" | |
"- Taman Sari\n- Tugu Yogyakarta" | |
) | |
lokasi = "-" | |
else: | |
label_output = f"{predicted_label} (Confidence: {confidence * 100:.2f}%)" | |
deskripsi = description.get(predicted_label, "Deskripsi belum tersedia.") | |
lokasi = location.get(predicted_label, None) | |
if lokasi: | |
lokasi = f'<a href="{lokasi}" target="_blank">Lihat Lokasi di Google Maps</a>' | |
else: | |
lokasi = "Lokasi tidak ditemukan" | |
return label_output, deskripsi, lokasi, akurasi | |
except Exception as e: | |
return "Error", str(e), "-" | |
# Fungsi untuk membuat FastAPI app | |
def create_app(): | |
app = FastAPI() | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], # atau daftar domain yang sah | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
# @app.post("/api/predict") | |
# async def predict(file: UploadFile = File(...)): | |
# contents = await file.read() | |
# img = Image.open(BytesIO(contents)).convert("RGB") | |
# label_output, deskripsi, lokasi, akurasi = classify_image(img) | |
# return JSONResponse(content={ | |
# "label_output": label_output, | |
# "deskripsi": deskripsi, | |
# "lokasi": lokasi, | |
# "confidence": akurasi | |
# }) | |
gradio_app = gr.Interface( | |
fn=classify_image, | |
inputs=gr.Image(type="pil", label="Upload Gambar"), | |
# outputs=["text", "text", "html"], | |
outputs=[ | |
gr.Textbox(label="Output Klasifikasi"), | |
gr.Textbox(label="Deskripsi Lengkap", lines=20, max_lines=50), | |
gr.HTML(label="Link Lokasi"), | |
], | |
# flagging_mode="never", | |
title="Klasifikasi Gambar", | |
description="Upload gambar, sistem akan mengklasifikasikan dan memberikan deskripsi mengenai gambar tersebut." | |
) | |
app = gr.mount_gradio_app(app, gradio_app, path="/gradio") | |
return app | |
app = create_app() | |
# Run server jika dijalankan langsung | |
# if __name__ == "__main__": | |
# import uvicorn | |
# # app = create_app() | |
# uvicorn.run(app, host="127.0.0.1", port=8000) |