Spaces:
Running
Running
menghilangkan fast api hugging face tidak support di app.py
Browse files
README.md
CHANGED
@@ -3,9 +3,10 @@ title: HistoryLens
|
|
3 |
emoji: 🐢
|
4 |
colorFrom: purple
|
5 |
colorTo: red
|
6 |
-
sdk:
|
|
|
7 |
app_file: app.py
|
8 |
pinned: false
|
9 |
license: apache-2.0
|
10 |
short_description: Classification Image
|
11 |
-
---
|
|
|
3 |
emoji: 🐢
|
4 |
colorFrom: purple
|
5 |
colorTo: red
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.33.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
short_description: Classification Image
|
12 |
+
---
|
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import os
|
2 |
-
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
3 |
-
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
4 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
5 |
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
|
6 |
|
@@ -10,36 +10,12 @@ tf.config.set_visible_devices([], 'GPU')
|
|
10 |
import gradio as gr
|
11 |
import numpy as np
|
12 |
from tensorflow.keras.preprocessing import image
|
13 |
-
from
|
14 |
-
from fastapi.responses import JSONResponse
|
15 |
-
from fastapi.middleware.cors import CORSMiddleware
|
16 |
-
from io import BytesIO
|
17 |
from PIL import Image
|
18 |
-
import logging
|
19 |
-
from tensorflow.keras.models import load_model, model_from_json
|
20 |
-
from tensorflow.keras import mixed_precision
|
21 |
-
from tensorflow.keras.saving import get_custom_objects, register_keras_serializable
|
22 |
-
from tensorflow.keras.mixed_precision import Policy
|
23 |
|
24 |
-
# Import deskripsi dan lokasi
|
25 |
from description import description
|
26 |
from location import location
|
27 |
|
28 |
-
# @register_keras_serializable(package="keras")
|
29 |
-
# class DTypePolicy(Policy):
|
30 |
-
# pass
|
31 |
-
|
32 |
-
# from tensorflow.keras.saving import get_custom_objects
|
33 |
-
# get_custom_objects()["DTypePolicy"] = DTypePolicy
|
34 |
-
|
35 |
-
# Nonaktifkan GPU (jika tidak digunakan)
|
36 |
-
tf.config.set_visible_devices([], 'GPU')
|
37 |
-
|
38 |
-
# Inisialisasi logger
|
39 |
-
# logging.basicConfig(level=logging.INFO)
|
40 |
-
# logger = logging.getLogger(__name__)
|
41 |
-
|
42 |
-
# ========== Fungsi Load Model dari File JSON + H5 ==========
|
43 |
def load_model_from_file(json_path, h5_path):
|
44 |
with open(json_path, "r") as f:
|
45 |
json_config = f.read()
|
@@ -47,18 +23,14 @@ def load_model_from_file(json_path, h5_path):
|
|
47 |
model.load_weights(h5_path)
|
48 |
return model
|
49 |
|
50 |
-
# ========== Load Model ==========
|
51 |
model = load_model_from_file("model.json", "my_model.h5")
|
52 |
|
53 |
-
|
54 |
-
# Daftar label
|
55 |
labels = [
|
56 |
"Benteng Vredeburg", "Candi Borobudur", "Candi Prambanan", "Gedung Agung Istana Kepresidenan",
|
57 |
"Masjid Gedhe Kauman", "Monumen Serangan 1 Maret", "Museum Gunungapi Merapi",
|
58 |
"Situs Ratu Boko", "Taman Sari", "Tugu Yogyakarta"
|
59 |
]
|
60 |
|
61 |
-
# Fungsi klasifikasi
|
62 |
def classify_image(img):
|
63 |
try:
|
64 |
img = img.resize((224, 224))
|
@@ -96,52 +68,16 @@ def classify_image(img):
|
|
96 |
except Exception as e:
|
97 |
return "Error", str(e), "-"
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
108 |
)
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
# @app.post("/api/predict")
|
113 |
-
# async def predict(file: UploadFile = File(...)):
|
114 |
-
# contents = await file.read()
|
115 |
-
# img = Image.open(BytesIO(contents)).convert("RGB")
|
116 |
-
# label_output, deskripsi, lokasi, akurasi = classify_image(img)
|
117 |
-
# return JSONResponse(content={
|
118 |
-
# "label_output": label_output,
|
119 |
-
# "deskripsi": deskripsi,
|
120 |
-
# "lokasi": lokasi,
|
121 |
-
# "confidence": akurasi
|
122 |
-
# })
|
123 |
-
|
124 |
-
gradio_app = gr.Interface(
|
125 |
-
fn=classify_image,
|
126 |
-
inputs=gr.Image(type="pil", label="Upload Gambar"),
|
127 |
-
# outputs=["text", "text", "html"],
|
128 |
-
outputs=[
|
129 |
-
gr.Textbox(label="Output Klasifikasi"),
|
130 |
-
gr.Textbox(label="Deskripsi Lengkap", lines=20, max_lines=50),
|
131 |
-
gr.HTML(label="Link Lokasi"),
|
132 |
-
],
|
133 |
-
# flagging_mode="never",
|
134 |
-
title="Klasifikasi Gambar",
|
135 |
-
description="Upload gambar, sistem akan mengklasifikasikan dan memberikan deskripsi mengenai gambar tersebut."
|
136 |
-
)
|
137 |
-
|
138 |
-
app = gr.mount_gradio_app(app, gradio_app, path="/gradio")
|
139 |
-
return app
|
140 |
-
|
141 |
-
app = create_app()
|
142 |
-
|
143 |
-
# Run server jika dijalankan langsung
|
144 |
-
# if __name__ == "__main__":
|
145 |
-
# import uvicorn
|
146 |
-
# # app = create_app()
|
147 |
-
# uvicorn.run(app, host="127.0.0.1", port=8000)
|
|
|
1 |
import os
|
2 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
3 |
+
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
4 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
5 |
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
|
6 |
|
|
|
10 |
import gradio as gr
|
11 |
import numpy as np
|
12 |
from tensorflow.keras.preprocessing import image
|
13 |
+
from tensorflow.keras.models import model_from_json
|
|
|
|
|
|
|
14 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
15 |
|
|
|
16 |
from description import description
|
17 |
from location import location
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
def load_model_from_file(json_path, h5_path):
|
20 |
with open(json_path, "r") as f:
|
21 |
json_config = f.read()
|
|
|
23 |
model.load_weights(h5_path)
|
24 |
return model
|
25 |
|
|
|
26 |
model = load_model_from_file("model.json", "my_model.h5")
|
27 |
|
|
|
|
|
28 |
labels = [
|
29 |
"Benteng Vredeburg", "Candi Borobudur", "Candi Prambanan", "Gedung Agung Istana Kepresidenan",
|
30 |
"Masjid Gedhe Kauman", "Monumen Serangan 1 Maret", "Museum Gunungapi Merapi",
|
31 |
"Situs Ratu Boko", "Taman Sari", "Tugu Yogyakarta"
|
32 |
]
|
33 |
|
|
|
34 |
def classify_image(img):
|
35 |
try:
|
36 |
img = img.resize((224, 224))
|
|
|
68 |
except Exception as e:
|
69 |
return "Error", str(e), "-"
|
70 |
|
71 |
+
interface = gr.Interface(
|
72 |
+
fn=classify_image,
|
73 |
+
inputs=gr.Image(type="pil", label="Upload Gambar"),
|
74 |
+
outputs=[
|
75 |
+
gr.Textbox(label="Output Klasifikasi"),
|
76 |
+
gr.Textbox(label="Deskripsi Lengkap", lines=20, max_lines=50),
|
77 |
+
gr.HTML(label="Link Lokasi"),
|
78 |
+
],
|
79 |
+
title="Klasifikasi Gambar",
|
80 |
+
description="Upload gambar, sistem akan mengklasifikasikan dan memberikan deskripsi mengenai gambar tersebut."
|
81 |
)
|
82 |
|
83 |
+
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|