Spaces:
Running
Running
menambahkan keras load model from jso
Browse files- Model_Load.py +2 -0
- app.py +59 -50
Model_Load.py
CHANGED
@@ -1,4 +1,6 @@
|
|
|
|
1 |
from keras.models import model_from_json
|
|
|
2 |
|
3 |
def load_model_from_files(json_path, weights_path):
|
4 |
with open(json_path, "r") as json_file:
|
|
|
1 |
+
import keras
|
2 |
from keras.models import model_from_json
|
3 |
+
print("keras versio:", keras.__version__)
|
4 |
|
5 |
def load_model_from_files(json_path, weights_path):
|
6 |
with open(json_path, "r") as json_file:
|
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import os
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
from keras.preprocessing import image
|
@@ -12,12 +12,21 @@ from fastapi import FastAPI, File, UploadFile
|
|
12 |
from fastapi.responses import JSONResponse
|
13 |
from io import BytesIO
|
14 |
from PIL import Image
|
15 |
-
import
|
16 |
-
from fastapi.middleware.cors import CORSMiddleware
|
17 |
import tensorflow as tf
|
18 |
-
tf.config.set_visible_devices([], 'GPU')
|
19 |
import logging
|
|
|
|
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
# Inisialisasi logger
|
23 |
logging.basicConfig(level=logging.INFO)
|
@@ -66,48 +75,48 @@ def classify_image(img):
|
|
66 |
|
67 |
return label_output, deskripsi, lokasi, akurasi
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
app = FastAPI()
|
72 |
-
|
73 |
-
app.add_middleware(
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
)
|
80 |
-
|
81 |
-
@app.post("/api/predict")
|
82 |
-
async def predict(file: UploadFile = File(...)):
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
)
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
# Jalankan app
|
112 |
if __name__ == "__main__":
|
113 |
-
uvicorn
|
|
|
|
|
|
1 |
import os
|
2 |
+
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
3 |
+
import keras
|
4 |
+
print("keras versio:", keras.__version__)
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
from keras.preprocessing import image
|
|
|
12 |
from fastapi.responses import JSONResponse
|
13 |
from io import BytesIO
|
14 |
from PIL import Image
|
15 |
+
from tensorflow.keras.models import model_from_json
|
|
|
16 |
import tensorflow as tf
|
|
|
17 |
import logging
|
18 |
+
from fastapi.middleware.cors import CORSMiddleware
|
19 |
+
from keras.models import model_from_json
|
20 |
|
21 |
+
def load_model_from_files(json_path, weights_path):
|
22 |
+
with open(json_path, "r") as json_file:
|
23 |
+
loaded_model_json = json_file.read()
|
24 |
+
model = model_from_json(loaded_model_json)
|
25 |
+
model.load_weights(weights_path)
|
26 |
+
return model
|
27 |
+
|
28 |
+
# Nonaktifkan GPU (jika tidak digunakan)
|
29 |
+
tf.config.set_visible_devices([], 'GPU')
|
30 |
|
31 |
# Inisialisasi logger
|
32 |
logging.basicConfig(level=logging.INFO)
|
|
|
75 |
|
76 |
return label_output, deskripsi, lokasi, akurasi
|
77 |
|
78 |
+
# Fungsi untuk membuat FastAPI app
|
79 |
+
def create_app():
|
80 |
+
app = FastAPI()
|
81 |
+
|
82 |
+
app.add_middleware(
|
83 |
+
CORSMiddleware,
|
84 |
+
allow_origins=["http://localhost:9000"], # atau sesuaikan dengan asal frontend
|
85 |
+
allow_credentials=True,
|
86 |
+
allow_methods=["*"],
|
87 |
+
allow_headers=["*"],
|
88 |
+
)
|
89 |
+
|
90 |
+
@app.post("/api/predict")
|
91 |
+
async def predict(file: UploadFile = File(...)):
|
92 |
+
contents = await file.read()
|
93 |
+
img = Image.open(BytesIO(contents)).convert("RGB")
|
94 |
+
label_output, deskripsi, lokasi, akurasi = classify_image(img)
|
95 |
+
return JSONResponse(content={
|
96 |
+
"label_output": label_output,
|
97 |
+
"deskripsi": deskripsi,
|
98 |
+
"lokasi": lokasi,
|
99 |
+
"confidence": akurasi
|
100 |
+
})
|
101 |
+
|
102 |
+
gradio_app = gr.Interface(
|
103 |
+
fn=classify_image,
|
104 |
+
inputs=gr.Image(type="pil", label="Upload Gambar"),
|
105 |
+
outputs=[
|
106 |
+
gr.Textbox(label="Output Klasifikasi"),
|
107 |
+
gr.Textbox(label="Deskripsi Lengkap", lines=20, max_lines=50),
|
108 |
+
gr.HTML(label="Link Lokasi"),
|
109 |
+
],
|
110 |
+
flagging_mode="never",
|
111 |
+
title="Klasifikasi Gambar",
|
112 |
+
description="Upload gambar, sistem akan mengklasifikasikan dan memberikan deskripsi mengenai gambar tersebut."
|
113 |
+
)
|
114 |
+
|
115 |
+
app = gr.mount_gradio_app(app, gradio_app, path="/gradio")
|
116 |
+
return app
|
117 |
+
|
118 |
+
# Hanya jalan jika dijalankan langsung, bukan import
|
|
|
|
|
119 |
if __name__ == "__main__":
|
120 |
+
import uvicorn
|
121 |
+
app = create_app()
|
122 |
+
uvicorn.run(app, host="127.0.0.1", port=8000)
|