Spaces:
Running
Running
melakukan perubahan pada app.py menyesuaikan library dan menginstal ulang requirements.txt
Browse files- app.py +86 -62
- requirements.txt +7 -9
app.py
CHANGED
@@ -1,35 +1,51 @@
|
|
1 |
import os
|
2 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
3 |
-
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
-
from keras.preprocessing import image
|
7 |
from fastapi import FastAPI, File, UploadFile
|
8 |
from fastapi.responses import JSONResponse
|
|
|
9 |
from io import BytesIO
|
10 |
from PIL import Image
|
11 |
import tensorflow as tf
|
12 |
import logging
|
13 |
-
|
14 |
-
from tensorflow.keras.models import load_model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# Import deskripsi dan lokasi
|
17 |
from description import description
|
18 |
from location import location
|
19 |
|
20 |
# Nonaktifkan GPU (jika tidak digunakan)
|
21 |
-
tf.config.set_visible_devices([], 'GPU')
|
22 |
|
23 |
# Inisialisasi logger
|
24 |
-
logging.basicConfig(level=logging.INFO)
|
25 |
-
logger = logging.getLogger(__name__)
|
26 |
|
27 |
-
# Fungsi
|
28 |
-
def load_model_from_file(h5_path):
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
# Load model
|
32 |
-
model = load_model_from_file("my_model.h5")
|
33 |
|
34 |
# Daftar label
|
35 |
labels = [
|
@@ -40,71 +56,77 @@ labels = [
|
|
40 |
|
41 |
# Fungsi klasifikasi
|
42 |
def classify_image(img):
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
label_output = f"{predicted_label} (Confidence: {confidence * 100:.2f}%)"
|
66 |
-
deskripsi = description.get(predicted_label, "Deskripsi belum tersedia.")
|
67 |
-
lokasi = location.get(predicted_label, None)
|
68 |
-
if lokasi:
|
69 |
-
lokasi = f'<a href="{lokasi}" target="_blank">Lihat Lokasi di Google Maps</a>'
|
70 |
else:
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
|
|
|
74 |
|
75 |
# Fungsi untuk membuat FastAPI app
|
76 |
def create_app():
|
77 |
app = FastAPI()
|
78 |
-
|
79 |
app.add_middleware(
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
98 |
|
99 |
gradio_app = gr.Interface(
|
100 |
fn=classify_image,
|
101 |
inputs=gr.Image(type="pil", label="Upload Gambar"),
|
|
|
102 |
outputs=[
|
103 |
gr.Textbox(label="Output Klasifikasi"),
|
104 |
gr.Textbox(label="Deskripsi Lengkap", lines=20, max_lines=50),
|
105 |
gr.HTML(label="Link Lokasi"),
|
106 |
],
|
107 |
-
flagging_mode="never",
|
108 |
title="Klasifikasi Gambar",
|
109 |
description="Upload gambar, sistem akan mengklasifikasikan dan memberikan deskripsi mengenai gambar tersebut."
|
110 |
)
|
@@ -112,8 +134,10 @@ def create_app():
|
|
112 |
app = gr.mount_gradio_app(app, gradio_app, path="/gradio")
|
113 |
return app
|
114 |
|
|
|
|
|
115 |
# Run server jika dijalankan langsung
|
116 |
if __name__ == "__main__":
|
117 |
import uvicorn
|
118 |
-
app = create_app()
|
119 |
uvicorn.run(app, host="127.0.0.1", port=8000)
|
|
|
1 |
import os
|
2 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
3 |
+
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
+
from tensorflow.keras.preprocessing import image
|
7 |
from fastapi import FastAPI, File, UploadFile
|
8 |
from fastapi.responses import JSONResponse
|
9 |
+
from fastapi.middleware.cors import CORSMiddleware
|
10 |
from io import BytesIO
|
11 |
from PIL import Image
|
12 |
import tensorflow as tf
|
13 |
import logging
|
14 |
+
|
15 |
+
from tensorflow.keras.models import load_model, model_from_json
|
16 |
+
from tensorflow.keras import mixed_precision
|
17 |
+
from tensorflow.keras.saving import get_custom_objects, register_keras_serializable
|
18 |
+
from tensorflow.keras.mixed_precision import Policy
|
19 |
+
|
20 |
+
# @register_keras_serializable(package="keras")
|
21 |
+
# class DTypePolicy(Policy):
|
22 |
+
# pass
|
23 |
+
|
24 |
+
# from tensorflow.keras.saving import get_custom_objects
|
25 |
+
# get_custom_objects()["DTypePolicy"] = DTypePolicy
|
26 |
|
27 |
# Import deskripsi dan lokasi
|
28 |
from description import description
|
29 |
from location import location
|
30 |
|
31 |
# Nonaktifkan GPU (jika tidak digunakan)
|
32 |
+
# tf.config.set_visible_devices([], 'GPU')
|
33 |
|
34 |
# Inisialisasi logger
|
35 |
+
# logging.basicConfig(level=logging.INFO)
|
36 |
+
# logger = logging.getLogger(__name__)
|
37 |
|
38 |
+
# ========== Fungsi Load Model dari File JSON + H5 ==========
|
39 |
+
def load_model_from_file(json_path, h5_path):
|
40 |
+
with open(json_path, "r") as f:
|
41 |
+
json_config = f.read()
|
42 |
+
model = model_from_json(json_config)
|
43 |
+
model.load_weights(h5_path)
|
44 |
+
return model
|
45 |
+
|
46 |
+
# ========== Load Model ==========
|
47 |
+
model = load_model_from_file("model.json", "my_model.h5")
|
48 |
|
|
|
|
|
49 |
|
50 |
# Daftar label
|
51 |
labels = [
|
|
|
56 |
|
57 |
# Fungsi klasifikasi
|
58 |
def classify_image(img):
|
59 |
+
try:
|
60 |
+
img = img.resize((224, 224))
|
61 |
+
img_array = image.img_to_array(img)
|
62 |
+
img_array = np.expand_dims(img_array, axis=0)
|
63 |
+
img_array = img_array / 255.0
|
64 |
+
|
65 |
+
pred = model.predict(img_array)[0]
|
66 |
+
confidence = np.max(pred)
|
67 |
+
predicted_label = labels[np.argmax(pred)]
|
68 |
+
|
69 |
+
akurasi = float(confidence)
|
70 |
+
if confidence < 0.8:
|
71 |
+
label_output = "Tidak dapat dikenali (Confidence: {:.2f}%)".format(confidence * 100)
|
72 |
+
deskripsi = (
|
73 |
+
"Tolong arahkan ke objek yang jelas agar bisa diidentifikasikan. "
|
74 |
+
"Pastikan anda berada di salah satu tempat seperti:\n"
|
75 |
+
"- Benteng Vredeburg\n- Candi Borobudur\n- Candi Prambanan\n"
|
76 |
+
"- Gedung Agung Istana Kepresidenan Yogyakarta\n- Masjid Gedhe Kauman\n"
|
77 |
+
"- Monumen Serangan 1 Maret\n- Museum Gunungapi Merapi\n- Situs Ratu Boko\n"
|
78 |
+
"- Taman Sari\n- Tugu Yogyakarta"
|
79 |
+
)
|
80 |
+
lokasi = "-"
|
|
|
|
|
|
|
|
|
|
|
81 |
else:
|
82 |
+
label_output = f"{predicted_label} (Confidence: {confidence * 100:.2f}%)"
|
83 |
+
deskripsi = description.get(predicted_label, "Deskripsi belum tersedia.")
|
84 |
+
lokasi = location.get(predicted_label, None)
|
85 |
+
if lokasi:
|
86 |
+
lokasi = f'<a href="{lokasi}" target="_blank">Lihat Lokasi di Google Maps</a>'
|
87 |
+
else:
|
88 |
+
lokasi = "Lokasi tidak ditemukan"
|
89 |
+
|
90 |
+
return label_output, deskripsi, lokasi, akurasi
|
91 |
|
92 |
+
except Exception as e:
|
93 |
+
return "Error", str(e), "-"
|
94 |
|
95 |
# Fungsi untuk membuat FastAPI app
|
96 |
def create_app():
|
97 |
app = FastAPI()
|
|
|
98 |
app.add_middleware(
|
99 |
+
CORSMiddleware,
|
100 |
+
allow_origins=["*"], # atau daftar domain yang sah
|
101 |
+
allow_credentials=True,
|
102 |
+
allow_methods=["*"],
|
103 |
+
allow_headers=["*"],
|
104 |
+
)
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
# @app.post("/api/predict")
|
109 |
+
# async def predict(file: UploadFile = File(...)):
|
110 |
+
# contents = await file.read()
|
111 |
+
# img = Image.open(BytesIO(contents)).convert("RGB")
|
112 |
+
# label_output, deskripsi, lokasi, akurasi = classify_image(img)
|
113 |
+
# return JSONResponse(content={
|
114 |
+
# "label_output": label_output,
|
115 |
+
# "deskripsi": deskripsi,
|
116 |
+
# "lokasi": lokasi,
|
117 |
+
# "confidence": akurasi
|
118 |
+
# })
|
119 |
|
120 |
gradio_app = gr.Interface(
|
121 |
fn=classify_image,
|
122 |
inputs=gr.Image(type="pil", label="Upload Gambar"),
|
123 |
+
# outputs=["text", "text", "html"],
|
124 |
outputs=[
|
125 |
gr.Textbox(label="Output Klasifikasi"),
|
126 |
gr.Textbox(label="Deskripsi Lengkap", lines=20, max_lines=50),
|
127 |
gr.HTML(label="Link Lokasi"),
|
128 |
],
|
129 |
+
# flagging_mode="never",
|
130 |
title="Klasifikasi Gambar",
|
131 |
description="Upload gambar, sistem akan mengklasifikasikan dan memberikan deskripsi mengenai gambar tersebut."
|
132 |
)
|
|
|
134 |
app = gr.mount_gradio_app(app, gradio_app, path="/gradio")
|
135 |
return app
|
136 |
|
137 |
+
app = create_app()
|
138 |
+
|
139 |
# Run server jika dijalankan langsung
|
140 |
if __name__ == "__main__":
|
141 |
import uvicorn
|
142 |
+
# app = create_app()
|
143 |
uvicorn.run(app, host="127.0.0.1", port=8000)
|
requirements.txt
CHANGED
@@ -1,10 +1,8 @@
|
|
1 |
-
tensorflow==2.
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
4 |
uvicorn==0.29.0
|
5 |
-
python-multipart==0.0.9
|
6 |
-
pillow==10.3.0
|
7 |
-
numpy==1.24.3 # Gantilah versi ini
|
8 |
-
python-dotenv==1.0.1
|
9 |
-
torch
|
10 |
-
keras==2.10.0
|
|
|
1 |
+
tensorflow==2.19.0
|
2 |
+
numpy==1.26.4
|
3 |
+
pillow==9.5.0
|
4 |
+
protobuf==3.20.3
|
5 |
+
grpcio==1.54.0
|
6 |
+
gradio==5.33.2
|
7 |
+
fastapi==0.115.12
|
8 |
uvicorn==0.29.0
|
|
|
|
|
|
|
|
|
|
|
|