import gradio as gr import numpy as np from keras.preprocessing import image from Model_Load import load_model_from_files from description import description from location import location from fastapi import FastAPI, File, UploadFile from fastapi.responses import JSONResponse from io import BytesIO from PIL import Image import uvicorn from fastapi.middleware.cors import CORSMiddleware # Load model dan label model = load_model_from_files("model.json", "my_model.h5") labels = [ "Benteng Vredeburg", "Candi Borobudur", "Candi Prambanan", "Gedung Agung Istana Kepresidenan", "Masjid Gedhe Kauman", "Monumen Serangan 1 Maret", "Museum Gunungapi Merapi", "Situs Ratu Boko", "Taman Sari", "Tugu Yogyakarta" ] # Fungsi preprocessing dan prediksi def classify_image(img): img = img.resize((224, 224)) img_array = image.img_to_array(img) img_array = np.expand_dims(img_array, axis=0) img_array = img_array / 255.0 pred = model.predict(img_array)[0] confidence = np.max(pred) predicted_label = labels[np.argmax(pred)] akurasi = float(confidence) if confidence < 0.8: label_output = "Tidak dapat dikenali (Confidence: {:.2f}%)".format(confidence * 100) deskripsi = ( "Tolong arahkan ke objek yang jelas agar bisa diidentifikasikan. " "Pastikan anda berada di salah satu tempat seperti:\n" "- Benteng Vredeburg\n- Candi Borobudur\n- Candi Prambanan\n" "- Gedung Agung Istana Kepresidenan Yogyakarta\n- Masjid Gedhe Kauman\n" "- Monumen Serangan 1 Maret\n- Museum Gunungapi Merapi\n- Situs Ratu Boko\n" "- Taman Sari\n- Tugu Yogyakarta" ) lokasi = "-" else: label_output = f"{predicted_label} (Confidence: {confidence * 100:.2f}%)" deskripsi = description.get(predicted_label, "Deskripsi belum tersedia.") lokasi = location.get(predicted_label, None) if lokasi: lokasi = f'Lihat Lokasi di Google Maps' else: lokasi = "Lokasi tidak ditemukan" return label_output, deskripsi, lokasi, akurasi # FastAPI instance app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["http://localhost:9000"], # atau sesuaikan dengan asal frontend allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) @app.post("/api/predict") async def predict(file: UploadFile = File(...)): contents = await file.read() img = Image.open(BytesIO(contents)).convert("RGB") label_output, deskripsi, lokasi, akurasi = classify_image(img) return JSONResponse(content={ "label_output": label_output, "deskripsi": deskripsi, "lokasi" : lokasi, "confidence": akurasi }) # Gradio antarmuka (opsional tetap ditampilkan) gradio_app = gr.Interface( fn=classify_image, inputs=gr.Image(type="pil", label="Upload Gambar"), outputs=[ gr.Textbox(label="Output Klasifikasi"), gr.Textbox(label="Deskripsi Lengkap", lines=20, max_lines=50), gr.HTML(label="Link Lokasi"), ], allow_flagging="never", title="Klasifikasi Gambar", description="Upload gambar, sistem akan mengklasifikasikan dan memberikan deskripsi mengenai gambar tersebut." ) # Mount Gradio ke FastAPI app = gr.mount_gradio_app(app, gradio_app, path="") # Jalankan app if __name__ == "__main__": uvicorn.run(app, host="127.0.0.1", port=8000)