import os os.environ['CUDA_VISIBLE_DEVICES'] = '-1' os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" import tensorflow as tf tf.config.set_visible_devices([], 'GPU') import gradio as gr import numpy as np from tensorflow.keras.preprocessing import image from tensorflow.keras.models import model_from_json from PIL import Image from description import description from location import location def load_model_from_file(json_path, h5_path): with open(json_path, "r") as f: json_config = f.read() model = model_from_json(json_config) model.load_weights(h5_path) return model model = load_model_from_file("model.json", "my_model.h5") labels = [ "Benteng Vredeburg", "Candi Borobudur", "Candi Prambanan", "Gedung Agung Istana Kepresidenan", "Masjid Gedhe Kauman", "Monumen Serangan 1 Maret", "Museum Gunungapi Merapi", "Situs Ratu Boko", "Taman Sari", "Tugu Yogyakarta" ] def classify_image(img): try: img = img.resize((224, 224)) img_array = image.img_to_array(img) img_array = np.expand_dims(img_array, axis=0) img_array = img_array / 255.0 pred = model.predict(img_array)[0] confidence = np.max(pred) predicted_label = labels[np.argmax(pred)] akurasi = float(confidence) if confidence < 0.8: label_output = "Tidak dapat dikenali (Confidence: {:.2f}%)".format(confidence * 100) deskripsi = ( "Tolong arahkan ke objek yang jelas agar bisa diidentifikasikan. " "Pastikan anda berada di salah satu tempat seperti:\n" "- Benteng Vredeburg\n- Candi Borobudur\n- Candi Prambanan\n" "- Gedung Agung Istana Kepresidenan Yogyakarta\n- Masjid Gedhe Kauman\n" "- Monumen Serangan 1 Maret\n- Museum Gunungapi Merapi\n- Situs Ratu Boko\n" "- Taman Sari\n- Tugu Yogyakarta" ) lokasi = "-" else: label_output = f"{predicted_label} (Confidence: {confidence * 100:.2f}%)" deskripsi = description.get(predicted_label, "Deskripsi belum tersedia.") lokasi = location.get(predicted_label, None) if lokasi: lokasi = f'Lihat Lokasi di Google Maps' else: lokasi = "Lokasi tidak ditemukan" return label_output, deskripsi, lokasi, akurasi except Exception as e: return "Error", str(e), "-" interface = gr.Interface( fn=classify_image, inputs=gr.Image(type="pil", label="Upload Gambar"), outputs=[ gr.Textbox(label="Output Klasifikasi"), gr.Textbox(label="Deskripsi Lengkap", lines=20, max_lines=50), gr.HTML(label="Link Lokasi"), ], title="Klasifikasi Gambar", description="Upload gambar, sistem akan mengklasifikasikan dan memberikan deskripsi mengenai gambar tersebut." ) interface.launch()