File size: 24,364 Bytes
0e1da98 64d69ba 5c21f33 64d69ba ea6f7e0 64d69ba 5c21f33 64d69ba 5c21f33 64d69ba 5c21f33 3eff9a7 0e1da98 5c21f33 3eff9a7 5c21f33 ea6f7e0 5c21f33 3eff9a7 5c21f33 4ed806b 64d69ba 5c21f33 ea6f7e0 5c21f33 ea6f7e0 5c21f33 0e1da98 5c21f33 0e1da98 5c21f33 0e1da98 5c21f33 ea6f7e0 0e1da98 ea6f7e0 0e1da98 ea6f7e0 0e1da98 589cd65 0e1da98 589cd65 5c21f33 0e1da98 5c21f33 0e1da98 5c21f33 0e1da98 5c21f33 0e1da98 5c21f33 0e1da98 5c21f33 0e1da98 5c21f33 0e1da98 5c21f33 0e1da98 5c21f33 0e1da98 5c21f33 0e1da98 5c21f33 0e1da98 64d69ba 0e1da98 64d69ba 0e1da98 64d69ba 5c21f33 64d69ba 5c21f33 4ed806b 64d69ba 0e1da98 64d69ba 5c21f33 4ed806b 64d69ba 0e1da98 5c21f33 0e1da98 5c21f33 64d69ba 5c21f33 4ed806b ea6f7e0 64d69ba 0e1da98 64d69ba 0e1da98 5c21f33 4ed806b 64d69ba 0e1da98 64d69ba 5c21f33 64d69ba 5c21f33 64d69ba 0e1da98 5c21f33 0e1da98 5c21f33 0e1da98 5c21f33 0e1da98 9ec5b3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
# --- app.py (O Painel de Controle do Maestro - Versão Final Completa) ---
# By Carlex & Gemini & DreamO
# --- Ato 1: A Convocação da Orquestra (Importações) ---
import gradio as gr
import torch
import os
import yaml
from PIL import Image
import shutil
import gc
import subprocess
import google.generativeai as genai
import numpy as np
import imageio
from pathlib import Path
import huggingface_hub
import json
from inference import create_ltx_video_pipeline, load_image_to_tensor_with_resize_and_crop, calculate_padding, ConditioningItem
from dreamo_helpers import dreamo_generator_singleton
import ltx_video.pipelines.crf_compressor as crf_compressor
# --- Ato 2: A Preparação do Palco (Configurações) ---
config_file_path = "configs/ltxv-13b-0.9.8-distilled.yaml"
with open(config_file_path, "r") as file: PIPELINE_CONFIG_YAML = yaml.safe_load(file)
LTX_REPO = "Lightricks/LTX-Video"
models_dir = "downloaded_models_gradio_cpu_init"
Path(models_dir).mkdir(parents=True, exist_ok=True)
WORKSPACE_DIR = "aduc_workspace"
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
VIDEO_FPS = 30
VIDEO_DURATION_SECONDS = 3
VIDEO_TOTAL_FRAMES = VIDEO_DURATION_SECONDS * VIDEO_FPS
CONVERGENCE_FRAMES = 8
MAX_REFS = 5 # Definimos um máximo de 5 referências para a UI
print("Baixando e criando pipelines LTX na CPU...")
distilled_model_actual_path = huggingface_hub.hf_hub_download(repo_id=LTX_REPO, filename=PIPELINE_CONFIG_YAML["checkpoint_path"], local_dir=models_dir, local_dir_use_symlinks=False)
pipeline_instance = create_ltx_video_pipeline(ckpt_path=distilled_model_actual_path, precision=PIPELINE_CONFIG_YAML["precision"], text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"], sampler=PIPELINE_CONFIG_YAML["sampler"], device='cpu')
print("Modelos LTX prontos (na CPU).")
# --- Ato 3: As Partituras dos Músicos (Funções) ---
def get_static_scenes_storyboard(num_fragments: int, prompt: str, initial_image_path: str, progress=gr.Progress()):
progress(0.5, desc="[Fotógrafo Gemini] Descrevendo as cenas estáticas...")
if not initial_image_path: raise gr.Error("Por favor, forneça uma imagem de referência inicial.")
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!")
genai.configure(api_key=GEMINI_API_KEY)
prompt_file = "prompts/photographer_prompt.txt"
try:
script_dir = os.path.dirname(os.path.abspath(__file__))
prompt_file_path = os.path.join(script_dir, prompt_file)
with open(prompt_file_path, "r", encoding="utf-8") as f: template = f.read()
except FileNotFoundError: raise gr.Error(f"Arquivo de prompt '{prompt_file}' não encontrado!")
director_prompt = template.format(user_prompt=prompt, num_fragments=int(num_fragments))
model = genai.GenerativeModel('gemini-2.0-flash')
img = Image.open(initial_image_path)
response = model.generate_content([director_prompt, img])
try:
cleaned_response = response.text.strip().replace("```json", "").replace("```", "")
if not cleaned_response: raise ValueError("A resposta do Gemini estava vazia.")
storyboard_data = json.loads(cleaned_response)
return storyboard_data.get("scene_storyboard", [])
except (json.JSONDecodeError, ValueError) as e:
raise gr.Error(f"O Fotógrafo retornou uma resposta inválida. Erro: {e}. Resposta Bruta: '{response.text}'")
def get_motion_storyboard(user_prompt: str, keyframe_image_paths: list, progress=gr.Progress()):
progress(0.5, desc="[Diretor Gemini] Criando o roteiro de movimento...")
if not keyframe_image_paths: raise gr.Error("Nenhuma imagem-chave fornecida para o diretor de cena.")
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!")
genai.configure(api_key=GEMINI_API_KEY)
prompt_file = "prompts/director_motion_prompt.txt"
try:
script_dir = os.path.dirname(os.path.abspath(__file__))
prompt_file_path = os.path.join(script_dir, prompt_file)
with open(prompt_file_path, "r", encoding="utf-8") as f: template = f.read()
except FileNotFoundError: raise gr.Error(f"Arquivo de prompt '{prompt_file}' não encontrado!")
director_prompt = template.format(user_prompt=user_prompt, num_fragments=len(keyframe_image_paths))
model_contents = [director_prompt]
for img_path in keyframe_image_paths:
img = Image.open(img_path)
model_contents.append(img)
model = genai.GenerativeModel('gemini-2.0-flash')
response = model.generate_content(model_contents)
try:
cleaned_response = response.text.strip().replace("```json", "").replace("```", "")
if not cleaned_response: raise ValueError("A resposta do Gemini estava vazia.")
storyboard_data = json.loads(cleaned_response)
return storyboard_data.get("motion_storyboard", [])
except (json.JSONDecodeError, ValueError) as e:
raise gr.Error(f"O Diretor de Cena retornou uma resposta inválida. Erro: {e}. Resposta Bruta: '{response.text}'")
def run_sequential_keyframe_generation(storyboard, initial_ref_image_path, *reference_args):
if not storyboard: raise gr.Error("Nenhum roteiro para gerar imagens-chave.")
if not initial_ref_image_path: raise gr.Error("A imagem de referência inicial é obrigatória.")
ref_paths = reference_args[:MAX_REFS]
ref_tasks = reference_args[MAX_REFS:]
with Image.open(initial_ref_image_path) as img:
width, height = img.size
width, height = (width // 32) * 32, (height // 32) * 32
keyframe_paths, log_history = [], ""
current_ref_image_path = initial_ref_image_path
try:
dreamo_generator_singleton.to_gpu()
for i, prompt in enumerate(storyboard):
log_history += f"Pintando Cena Sequencial {i+1}/{len(storyboard)}...\n"
yield {keyframe_log_output: gr.update(value=log_history), keyframe_gallery_output: gr.update(value=keyframe_paths)}
reference_items_for_dreamo = []
reference_items_for_dreamo.append({
'image_np': np.array(Image.open(current_ref_image_path).convert("RGB")),
'task': ref_tasks[0]
})
for j in range(1, MAX_REFS):
if ref_paths[j]:
reference_items_for_dreamo.append({
'image_np': np.array(Image.open(ref_paths[j]).convert("RGB")),
'task': ref_tasks[j]
})
output_path = os.path.join(WORKSPACE_DIR, f"keyframe_image_{i+1}.png")
image = dreamo_generator_singleton.generate_image_with_gpu_management(
reference_items=reference_items_for_dreamo,
prompt=prompt,
width=width,
height=height
)
image.save(output_path)
keyframe_paths.append(output_path)
current_ref_image_path = output_path
log_history += f"Cena {i+1} pintada. A próxima cena usará '{os.path.basename(output_path)}' como referência.\n"
yield {
keyframe_log_output: gr.update(value=log_history),
keyframe_gallery_output: gr.update(value=keyframe_paths),
keyframe_images_state: keyframe_paths,
ref_image_inputs[0]: gr.update(value=current_ref_image_path)
}
finally:
dreamo_generator_singleton.to_cpu()
log_history += "\nPintura sequencial de todas as cenas concluída!"
yield {keyframe_log_output: gr.update(value=log_history)}
def extract_final_frames_video(input_video_path: str, output_video_path: str, num_frames: int):
if not os.path.exists(input_video_path): raise gr.Error(f"Erro Interno: Vídeo de entrada para extração não encontrado: {input_video_path}")
try:
command_probe = f"ffprobe -v error -select_streams v:0 -count_frames -show_entries stream=nb_read_frames -of default=noprint_wrappers=1:nokey=1 \"{input_video_path}\""
result_probe = subprocess.run(command_probe, shell=True, check=True, capture_output=True, text=True)
total_frames = int(result_probe.stdout.strip())
start_frame_index = total_frames - num_frames
if start_frame_index < 0:
print(f"Aviso: O vídeo tem menos de {num_frames} frames. Usando o vídeo inteiro como convergência.")
shutil.copyfile(input_video_path, output_video_path)
return output_video_path
command_extract = f"ffmpeg -y -i \"{input_video_path}\" -vf \"select='gte(n,{start_frame_index})'\" -c:v libx264 -preset ultrafast -an \"{output_video_path}\""
subprocess.run(command_extract, shell=True, check=True, capture_output=True, text=True)
return output_video_path
except (subprocess.CalledProcessError, ValueError) as e:
error_message = f"FFmpeg/FFprobe falhou ao extrair os frames finais: {e}"
if hasattr(e, 'stderr'): error_message += f"\nDetalhes: {e.stderr}"
raise gr.Error(error_message)
def load_conditioning_tensor(media_path: str, height: int, width: int) -> torch.Tensor:
if media_path.lower().endswith(('.png', '.jpg', '.jpeg')):
return load_image_to_tensor_with_resize_and_crop(media_path, height, width)
elif media_path.lower().endswith('.mp4'):
try:
with imageio.get_reader(media_path) as reader:
first_frame = reader.get_data(0)
image = Image.fromarray(first_frame).convert("RGB").resize((width, height))
image = np.array(image)
frame_tensor = torch.from_numpy(image).float()
frame_tensor = crf_compressor.compress(frame_tensor / 255.0) * 255.0
frame_tensor = frame_tensor.permute(2, 0, 1)
frame_tensor = (frame_tensor / 127.5) - 1.0
return frame_tensor.unsqueeze(0).unsqueeze(2)
except Exception as e:
raise gr.Error(f"Falha ao ler o primeiro frame do vídeo de convergência '{media_path}': {e}")
else:
raise gr.Error(f"Formato de arquivo de condicionamento não suportado: {media_path}")
def run_ltx_animation(current_fragment_index, motion_prompt, conditioning_items_data, width, height, seed, cfg, progress=gr.Progress()):
progress(0, desc=f"[Animador LTX] Gerando Cena {current_fragment_index}...")
output_path = os.path.join(WORKSPACE_DIR, f"fragment_{current_fragment_index}.mp4")
target_device = 'cuda' if torch.cuda.is_available() else 'cpu'
try:
pipeline_instance.to(target_device)
conditioning_items = []
for (path, start_frame, strength) in conditioning_items_data:
tensor = load_conditioning_tensor(path, height, width)
conditioning_items.append(ConditioningItem(tensor.to(target_device), start_frame, strength))
n_val = round((float(VIDEO_TOTAL_FRAMES) - 1.0) / 8.0)
actual_num_frames = int(n_val * 8 + 1)
padded_h, padded_w = ((height - 1) // 32 + 1) * 32, ((width - 1) // 32 + 1) * 32
padding_vals = calculate_padding(height, width, padded_h, padded_w)
for cond_item in conditioning_items: cond_item.media_item = torch.nn.functional.pad(cond_item.media_item, padding_vals)
timesteps = PIPELINE_CONFIG_YAML.get("first_pass", {}).get("timesteps")
kwargs = {"prompt": motion_prompt, "negative_prompt": "blurry, distorted, bad quality, artifacts", "height": padded_h, "width": padded_w, "num_frames": actual_num_frames, "frame_rate": VIDEO_FPS, "generator": torch.Generator(device=target_device).manual_seed(int(seed) + current_fragment_index), "output_type": "pt", "guidance_scale": float(cfg), "timesteps": timesteps, "conditioning_items": conditioning_items, "vae_per_channel_normalize": True, "decode_timestep": PIPELINE_CONFIG_YAML["decode_timestep"], "decode_noise_scale": PIPELINE_CONFIG_YAML["decode_noise_scale"], "stochastic_sampling": PIPELINE_CONFIG_YAML["stochastic_sampling"], "image_cond_noise_scale": 0.15, "is_video": True, "mixed_precision": (PIPELINE_CONFIG_YAML["precision"] == "mixed_precision"), "offload_to_cpu": False, "enhance_prompt": False}
result_tensor = pipeline_instance(**kwargs).images
pad_l, pad_r, pad_t, pad_b = padding_vals
slice_h, slice_w = (-pad_b if pad_b > 0 else None), (-pad_r if pad_r > 0 else None)
cropped_tensor = result_tensor[:, :, :VIDEO_TOTAL_FRAMES, pad_t:slice_h, pad_l:slice_w]
video_np = (cropped_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() * 255).astype(np.uint8)
with imageio.get_writer(output_path, fps=VIDEO_FPS, codec='libx264', quality=8) as writer:
for i, frame in enumerate(video_np): progress(i / len(video_np), desc=f"Renderizando frame {i+1}/{len(video_np)}..."); writer.append_data(frame)
return output_path
finally:
pipeline_instance.to('cpu'); gc.collect(); torch.cuda.empty_cache()
def run_full_video_production(prompt_geral, keyframe_image_paths, seed, cfg):
if not keyframe_image_paths: raise gr.Error("Imagens-chave estão faltando.")
log_history = "Iniciando Etapa 3: Geração do Roteiro de Movimento...\n"
yield {video_production_log_output: gr.update(value=log_history)}
motion_storyboard = get_motion_storyboard(prompt_geral, keyframe_image_paths)
if not motion_storyboard or len(motion_storyboard) != len(keyframe_image_paths):
raise gr.Error("Falha ao gerar o roteiro de movimento ou o número de prompts não corresponde ao número de imagens.")
log_history += "Roteiro de movimento gerado com sucesso.\n\nIniciando Etapa 4: Produção dos Vídeos com Convergência Física...\n"
yield {video_production_log_output: gr.update(value=log_history)}
with Image.open(keyframe_image_paths[0]) as img: width, height = img.size
video_fragments = []
num_keyframes = len(keyframe_image_paths)
n_val = round((float(VIDEO_TOTAL_FRAMES) - 1.0) / 8.0)
actual_num_frames = int(n_val * 8 + 1)
end_frame_index = actual_num_frames - 1
previous_media_path = keyframe_image_paths[0]
for i in range(num_keyframes):
current_motion_prompt = motion_storyboard[i]
log_message = f"\n--- Preparando Fragmento {i+1}/{num_keyframes} ---\n"
log_message += f"Motor de partida (convergência): {os.path.basename(previous_media_path)}\n"
log_history += log_message
yield {video_production_log_output: gr.update(value=log_history)}
start_media_path = previous_media_path
if i < num_keyframes - 1:
end_image_path = keyframe_image_paths[i+1]
conditioning_items_data = [(start_media_path, 0, 1.0), (end_image_path, end_frame_index, 1.0)]
log_message = f"Ponto final (alvo): {os.path.basename(end_image_path)}\n"
else:
conditioning_items_data = [(start_media_path, 0, 1.0)]
log_message = "Animação final livre (sem ponto final definido).\n"
log_history += log_message
yield {video_production_log_output: gr.update(value=log_history)}
full_fragment_path = run_ltx_animation(i + 1, current_motion_prompt, conditioning_items_data, width, height, seed, cfg)
video_fragments.append(full_fragment_path)
log_message = f"Fragmento {i+1} concluído: {os.path.basename(full_fragment_path)}\n"
log_history += log_message
yield {
video_production_log_output: gr.update(value=log_history),
fragment_gallery_output: gr.update(value=video_fragments),
fragment_list_state: video_fragments,
final_fragments_display: gr.update(value=video_fragments)
}
if i < num_keyframes - 1:
convergence_video_path = os.path.join(WORKSPACE_DIR, f"convergence_clip_{i+1}.mp4")
log_message = f"Extraindo {CONVERGENCE_FRAMES} frames de convergência para a próxima etapa...\n"
log_history += log_message
yield {video_production_log_output: gr.update(value=log_history)}
extract_final_frames_video(full_fragment_path, convergence_video_path, CONVERGENCE_FRAMES)
previous_media_path = convergence_video_path
log_history += "\nProdução de todas as cenas de vídeo concluída!"
yield {video_production_log_output: gr.update(value=log_history)}
def concatenate_masterpiece(fragment_paths: list, progress=gr.Progress()):
progress(0.5, desc="Montando a obra-prima final...")
list_file_path = os.path.join(WORKSPACE_DIR, "concat_list.txt")
final_output_path = os.path.join(WORKSPACE_DIR, "obra_prima_final.mp4")
with open(list_file_path, "w") as f:
for path in fragment_paths: f.write(f"file '{os.path.abspath(path)}'\n")
command = f"ffmpeg -y -f concat -safe 0 -i {list_file_path} -c copy {final_output_path}"
try:
subprocess.run(command, shell=True, check=True, capture_output=True, text=True)
return final_output_path
except subprocess.CalledProcessError as e:
raise gr.Error(f"FFmpeg falhou ao unir os vídeos: {e.stderr}")
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# LTX Video - Storyboard em Vídeo (ADUC-SDR)\n*By Carlex & Gemini & DreamO*")
scene_storyboard_state = gr.State([])
keyframe_images_state = gr.State([])
fragment_list_state = gr.State([])
prompt_geral_state = gr.State("")
if os.path.exists(WORKSPACE_DIR): shutil.rmtree(WORKSPACE_DIR)
os.makedirs(WORKSPACE_DIR)
with gr.Tabs():
with gr.TabItem("ETAPA 1: O FOTÓGRAFO (Roteiro de Cenas)"):
with gr.Row():
with gr.Column():
num_fragments_input = gr.Slider(2, 10, 4, step=1, label="Número de Cenas")
prompt_input = gr.Textbox(label="Ideia Geral (Prompt)")
image_input = gr.Image(type="filepath", label="Imagem de Referência Principal")
director_button = gr.Button("▶️ 1. Gerar Roteiro de Cenas", variant="primary")
with gr.Column():
storyboard_to_show = gr.JSON(label="Roteiro de Cenas Gerado")
with gr.TabItem("ETAPA 2: O PINTOR (Imagens-Chave)"):
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("### Controles do Pintor (DreamO)\nUse os botões `+` e `-` para adicionar ou remover slots de referência opcionais (até 5 no total).")
visible_references_state = gr.State(1)
ref_image_inputs = []
ref_task_inputs = []
with gr.Blocks() as ref_blocks:
for i in range(MAX_REFS):
is_visible = i < 1
label_prefix = f"Referência {i+1}"
if i == 0:
label_prefix += " (Sequencial)"
default_task = "style"
is_interactive = False
else:
label_prefix += " (Opcional, Fixa)"
default_task = "ip"
is_interactive = True
with gr.Row(visible=is_visible) as ref_row:
img = gr.Image(label=label_prefix, type="filepath", interactive=is_interactive)
task = gr.Dropdown(choices=["ip", "id", "style"], value=default_task, label=f"Tarefa para Ref {i+1}")
ref_image_inputs.append(img)
ref_task_inputs.append(task)
with gr.Row():
add_ref_button = gr.Button("➕ Adicionar Referência")
remove_ref_button = gr.Button("➖ Remover Referência")
photographer_button = gr.Button("▶️ 2. Pintar Imagens-Chave em Sequência", variant="primary")
keyframe_log_output = gr.Textbox(label="Diário de Bordo do Pintor", lines=5, interactive=False)
with gr.Column(scale=1):
keyframe_gallery_output = gr.Gallery(label="Imagens-Chave Pintadas", object_fit="contain", height="auto", type="filepath")
with gr.TabItem("ETAPA 3: PRODUÇÃO (Gerar Vídeos)"):
gr.Markdown("Nesta etapa, o sistema irá primeiro gerar o roteiro de movimento e depois animar os clipes, **usando o final de um clipe para dar partida no próximo**.")
with gr.Row():
with gr.Column():
keyframes_to_render = gr.Gallery(label="Imagens-Chave para Animar", object_fit="contain", height="auto", interactive=False)
animator_button = gr.Button("▶️ 3. Produzir Cenas em Vídeo", variant="primary", interactive=False)
video_production_log_output = gr.Textbox(label="Diário de Bordo da Produção", lines=10, interactive=False)
with gr.Column():
fragment_gallery_output = gr.Gallery(label="Cenas Produzidas (Vídeos)", object_fit="contain", height="auto")
with gr.Row():
seed_number = gr.Number(42, label="Seed")
cfg_slider = gr.Slider(1.0, 10.0, 2.5, step=0.1, label="CFG")
with gr.TabItem("ETAPA 4: PÓS-PRODUÇÃO"):
with gr.Row():
with gr.Column():
editor_button = gr.Button("▶️ 4. Concatenar Vídeo Final", variant="primary")
final_fragments_display = gr.JSON(label="Fragmentos a Concatenar")
with gr.Column():
final_video_output = gr.Video(label="A Obra-Prima Final")
# --- Ato 5: A Regência (Lógica de Conexão dos Botões) ---
def on_director_success(storyboard_list, img_path, prompt_geral):
if not storyboard_list: raise gr.Error("O storyboard está vazio ou em formato inválido.")
return storyboard_list, img_path, prompt_geral, gr.update(value=storyboard_list), gr.update(value=img_path)
director_button.click(
fn=get_static_scenes_storyboard,
inputs=[num_fragments_input, prompt_input, image_input],
outputs=[scene_storyboard_state]
).then(
fn=on_director_success,
inputs=[scene_storyboard_state, image_input, prompt_input],
outputs=[scene_storyboard_state, ref_image_inputs[0], prompt_geral_state, storyboard_to_show, ref_image_inputs[0]]
)
def update_reference_visibility(current_count, action):
if action == "add": new_count = min(MAX_REFS, current_count + 1)
else: new_count = max(1, current_count - 1)
updates = [gr.update(visible=(i < new_count)) for i in range(MAX_REFS)]
return [new_count] + updates
all_ref_rows = [comp.parent for comp in ref_image_inputs]
add_ref_button.click(fn=update_reference_visibility, inputs=[visible_references_state, gr.State("add")], outputs=[visible_references_state] + all_ref_rows)
remove_ref_button.click(fn=update_reference_visibility, inputs=[visible_references_state, gr.State("remove")], outputs=[visible_references_state] + all_ref_rows)
photographer_button.click(
fn=run_sequential_keyframe_generation,
inputs=[scene_storyboard_state, ref_image_inputs[0]] + ref_image_inputs + ref_task_inputs,
outputs=[keyframe_log_output, keyframe_gallery_output, keyframe_images_state, ref_image_inputs[0]]
).then(
lambda paths: {keyframes_to_render: gr.update(value=paths), animator_button: gr.update(interactive=True)},
inputs=[keyframe_images_state],
outputs=[keyframes_to_render, animator_button]
)
animator_button.click(
fn=run_full_video_production,
inputs=[prompt_geral_state, keyframe_images_state, seed_number, cfg_slider],
outputs=[video_production_log_output, fragment_gallery_output, fragment_list_state, final_fragments_display]
)
editor_button.click(
fn=concatenate_masterpiece,
inputs=[fragment_list_state],
outputs=[final_video_output]
)
if __name__ == "__main__":
demo.queue().launch(server_name="0.0.0.0", share=True) |