Update dreamo_helpers.py
Browse files- dreamo_helpers.py +99 -281
dreamo_helpers.py
CHANGED
@@ -1,288 +1,106 @@
|
|
1 |
-
#
|
2 |
-
#
|
3 |
|
4 |
-
# --- Ato 1: A Convocação da Orquestra (Importações) ---
|
5 |
-
import gradio as gr
|
6 |
-
import torch
|
7 |
import os
|
8 |
-
import
|
9 |
-
|
10 |
-
import shutil
|
11 |
-
import gc
|
12 |
-
import subprocess
|
13 |
-
import math
|
14 |
-
import google.generativeai as genai
|
15 |
import numpy as np
|
16 |
-
import
|
17 |
-
from pathlib import Path
|
18 |
import huggingface_hub
|
19 |
-
import
|
20 |
-
|
21 |
-
|
22 |
-
from
|
23 |
-
from
|
24 |
-
from
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
|
36 |
-
|
37 |
-
VIDEO_FPS = 30
|
38 |
-
VIDEO_DURATION_SECONDS = 4
|
39 |
-
VIDEO_TOTAL_FRAMES = VIDEO_DURATION_SECONDS * VIDEO_FPS
|
40 |
-
|
41 |
-
# <<<< INICIALIZAÇÃO NA CPU >>>>
|
42 |
-
print("Baixando e criando pipelines LTX na CPU...")
|
43 |
-
distilled_model_actual_path = huggingface_hub.hf_hub_download(repo_id=LTX_REPO, filename=PIPELINE_CONFIG_YAML["checkpoint_path"], local_dir=models_dir, local_dir_use_symlinks=False)
|
44 |
-
pipeline_instance = create_ltx_video_pipeline(ckpt_path=distilled_model_actual_path, precision=PIPELINE_CONFIG_YAML["precision"], text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"], sampler=PIPELINE_CONFIG_YAML["sampler"], device='cpu')
|
45 |
-
print("Modelos LTX prontos (na CPU).")
|
46 |
-
|
47 |
-
# --- Ato 3: As Partituras dos Músicos (Funções) ---
|
48 |
-
|
49 |
-
def get_storyboard_from_director(num_fragments: int, prompt: str, initial_image_path: str, progress=gr.Progress()):
|
50 |
-
progress(0.5, desc="[Diretor Gemini] Criando o storyboard...")
|
51 |
-
if not initial_image_path: raise gr.Error("Por favor, forneça uma imagem de referência inicial.")
|
52 |
-
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!")
|
53 |
-
genai.configure(api_key=GEMINI_API_KEY)
|
54 |
-
try:
|
55 |
-
with open("prompts/director_storyboard_v2.txt", "r", encoding="utf-8") as f: template = f.read()
|
56 |
-
except FileNotFoundError: raise gr.Error("'prompts/director_storyboard_v2.txt' não encontrado!")
|
57 |
-
director_prompt = template.format(user_prompt=prompt, num_fragments=int(num_fragments))
|
58 |
-
model = genai.GenerativeModel('gemini-2.0-flash')
|
59 |
-
img = Image.open(initial_image_path)
|
60 |
-
response = model.generate_content([director_prompt, img])
|
61 |
-
try:
|
62 |
-
cleaned_response = response.text.strip().replace("```json", "").replace("```", "")
|
63 |
-
storyboard_data = json.loads(cleaned_response)
|
64 |
-
return storyboard_data.get("storyboard", [])
|
65 |
-
except Exception as e:
|
66 |
-
raise gr.Error(f"O Diretor retornou uma resposta inesperada. Erro: {e}")
|
67 |
-
|
68 |
-
def run_keyframe_generation(storyboard, ref_img_path_1, ref_img_path_2, ref_task_1, ref_task_2):
|
69 |
-
if not storyboard: raise gr.Error("Nenhum roteiro para gerar imagens-chave.")
|
70 |
-
if not ref_img_path_1: raise gr.Error("A Referência 1 é obrigatória.")
|
71 |
-
|
72 |
-
keyframe_paths, log_history = [], ""
|
73 |
-
try:
|
74 |
-
dreamo_generator_singleton.to_gpu()
|
75 |
-
for i, prompt in enumerate(storyboard):
|
76 |
-
log_message = f"Pintando Cena {i+1}/{len(storyboard)} com DreamO..."
|
77 |
-
log_history += log_message + "\n"
|
78 |
-
yield {keyframe_log_output: gr.update(value=log_history)}
|
79 |
-
|
80 |
-
output_path = os.path.join(WORKSPACE_DIR, f"keyframe_image_{i+1}.png")
|
81 |
-
|
82 |
-
image = dreamo_generator_singleton.generate_image(
|
83 |
-
ref_image1_np=np.array(Image.open(ref_img_path_1).convert("RGB")) if ref_img_path_1 else None,
|
84 |
-
ref_image2_np=np.array(Image.open(ref_img_path_2).convert("RGB")) if ref_img_path_2 else None,
|
85 |
-
ref_task1=ref_task_1, ref_task2=ref_task_2,
|
86 |
-
prompt=prompt
|
87 |
-
)
|
88 |
-
image.save(output_path)
|
89 |
-
keyframe_paths.append(output_path)
|
90 |
-
|
91 |
-
log_message = f"Cena {i+1} pintada."
|
92 |
-
log_history += log_message + "\n"
|
93 |
-
yield {keyframe_log_output: gr.update(value=log_history), keyframe_gallery_output: gr.update(value=keyframe_paths), keyframe_images_state: keyframe_paths}
|
94 |
-
finally:
|
95 |
-
dreamo_generator_singleton.to_cpu()
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
def run_ltx_animation(current_fragment_index, motion_prompt, conditioning_items_data, seed, cfg, progress=gr.Progress()):
|
101 |
-
progress(0, desc=f"[Animador LTX] Interpolando Cena {current_fragment_index}...")
|
102 |
-
output_path = os.path.join(WORKSPACE_DIR, f"fragment_{current_fragment_index}.mp4")
|
103 |
-
target_device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
104 |
-
|
105 |
-
try:
|
106 |
-
pipeline_instance.to(target_device)
|
107 |
-
conditioning_items = []
|
108 |
-
for (path, start_frame, strength) in conditioning_items_data:
|
109 |
-
tensor = load_image_to_tensor_with_resize_and_crop(path, VIDEO_HEIGHT, VIDEO_WIDTH)
|
110 |
-
conditioning_items.append(ConditioningItem(tensor.to(target_device), start_frame, strength))
|
111 |
-
|
112 |
-
num_frames_padded = 121
|
113 |
-
padded_h, padded_w = ((VIDEO_HEIGHT - 1) // 32 + 1) * 32, ((VIDEO_WIDTH - 1) // 32 + 1) * 32
|
114 |
-
padding_vals = calculate_padding(VIDEO_HEIGHT, VIDEO_WIDTH, padded_h, padded_w)
|
115 |
-
|
116 |
-
for cond_item in conditioning_items:
|
117 |
-
cond_item.media_item = torch.nn.functional.pad(cond_item.media_item, padding_vals)
|
118 |
-
|
119 |
-
timesteps = PIPELINE_CONFIG_YAML.get("first_pass", {}).get("timesteps")
|
120 |
-
kwargs = {
|
121 |
-
"prompt": motion_prompt, "negative_prompt": "blurry, distorted, bad quality, artifacts",
|
122 |
-
"height": padded_h, "width": padded_w, "num_frames": num_frames_padded, "frame_rate": VIDEO_FPS,
|
123 |
-
"generator": torch.Generator(device=target_device).manual_seed(int(seed) + current_fragment_index),
|
124 |
-
"output_type": "pt", "guidance_scale": float(cfg), "timesteps": timesteps,
|
125 |
-
"conditioning_items": conditioning_items, "vae_per_channel_normalize": True,
|
126 |
-
"decode_timestep": PIPELINE_CONFIG_YAML["decode_timestep"],
|
127 |
-
"decode_noise_scale": PIPELINE_CONFIG_YAML["decode_noise_scale"],
|
128 |
-
"stochastic_sampling": PIPELINE_CONFIG_YAML["stochastic_sampling"],
|
129 |
-
"image_cond_noise_scale": 0.15, "is_video": True,
|
130 |
-
"mixed_precision": (PIPELINE_CONFIG_YAML["precision"] == "mixed_precision"),
|
131 |
-
"offload_to_cpu": False, "enhance_prompt": False
|
132 |
-
}
|
133 |
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
gc.collect()
|
144 |
-
if torch.cuda.is_available():
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
os.makedirs(WORKSPACE_DIR)
|
198 |
-
|
199 |
-
with gr.Tabs():
|
200 |
-
with gr.TabItem("ETAPA 1: O DIRETOR (Roteiro Visual)"):
|
201 |
-
with gr.Row():
|
202 |
-
with gr.Column():
|
203 |
-
num_fragments_input = gr.Slider(2, 10, 4, step=1, label="Número de Cenas")
|
204 |
-
prompt_input = gr.Textbox(label="Ideia Geral (Prompt)")
|
205 |
-
image_input = gr.Image(type="filepath", label="Imagem de Referência Principal")
|
206 |
-
director_button = gr.Button("▶️ 1. Gerar Roteiro Visual", variant="primary")
|
207 |
-
with gr.Column():
|
208 |
-
storyboard_to_show = gr.JSON(label="Roteiro Gerado (para visualização)")
|
209 |
-
with gr.TabItem("ETAPA 2: O PINTOR (Imagens-Chave)"):
|
210 |
-
with gr.Row():
|
211 |
-
with gr.Column(scale=2):
|
212 |
-
gr.Markdown("### Controles do Pintor (DreamO)")
|
213 |
-
with gr.Row():
|
214 |
-
ref_image_1_input = gr.Image(label="Referência 1 (Principal)", type="filepath")
|
215 |
-
ref_image_2_input = gr.Image(label="Referência 2 (Opcional, para composição)", type="filepath")
|
216 |
-
with gr.Row():
|
217 |
-
ref_task_1_input = gr.Dropdown(choices=["ip", "id", "style"], value="ip", label="Tarefa para Referência 1")
|
218 |
-
ref_task_2_input = gr.Dropdown(choices=["ip", "id", "style"], value="ip", label="Tarefa para Referência 2")
|
219 |
-
photographer_button = gr.Button("▶️ 2. Pintar Imagens-Chave", variant="primary")
|
220 |
-
keyframe_log_output = gr.Textbox(label="Diário de Bordo do Pintor", lines=5, interactive=False)
|
221 |
-
with gr.Column(scale=1):
|
222 |
-
keyframe_gallery_output = gr.Gallery(label="Imagens-Chave Pintadas", object_fit="contain", height="auto", type="filepath")
|
223 |
-
with gr.TabItem("ETAPA 3: A PRODUÇÃO (Gerar Cenas em Vídeo)"):
|
224 |
-
gr.Markdown(f"Gere o vídeo interpolando entre as imagens-chave. Cada clipe terá **{VIDEO_DURATION_SECONDS} segundos a {VIDEO_FPS} FPS ({VIDEO_TOTAL_FRAMES} quadros)**.")
|
225 |
-
with gr.Row():
|
226 |
-
with gr.Column():
|
227 |
-
keyframes_to_render = gr.Gallery(label="Imagens-Chave para Animar", object_fit="contain", height="auto", interactive=False)
|
228 |
-
animator_button = gr.Button("▶️ 3. Produzir Cenas em Vídeo", variant="primary")
|
229 |
-
video_production_log_output = gr.Textbox(label="Diário de Bordo da Produção", lines=10, interactive=False)
|
230 |
-
with gr.Column():
|
231 |
-
fragment_gallery_output = gr.Gallery(label="Cenas Produzidas (Vídeos)", object_fit="contain", height="auto")
|
232 |
-
with gr.Row():
|
233 |
-
seed_number = gr.Number(42, label="Seed")
|
234 |
-
cfg_slider = gr.Slider(1.0, 10.0, 2.5, step=0.1, label="CFG")
|
235 |
-
with gr.TabItem("ETAPA 4: PÓS-PRODUÇÃO"):
|
236 |
-
with gr.Row():
|
237 |
-
with gr.Column():
|
238 |
-
editor_button = gr.Button("▶️ 4. Concatenar Vídeo Final", variant="primary")
|
239 |
-
final_fragments_display = gr.JSON(label="Fragmentos a Concatenar")
|
240 |
-
with gr.Column():
|
241 |
-
final_video_output = gr.Video(label="A Obra-Prima Final")
|
242 |
-
|
243 |
-
def director_success(storyboard_list, img_path):
|
244 |
-
if not storyboard_list: raise gr.Error("O storyboard está vazio ou em formato inválido.")
|
245 |
-
return {
|
246 |
-
storyboard_state: storyboard_list,
|
247 |
-
storyboard_to_show: gr.update(value=storyboard_list),
|
248 |
-
ref_image_1_input: gr.update(value=img_path)
|
249 |
-
}
|
250 |
-
|
251 |
-
director_button.click(
|
252 |
-
fn=get_storyboard_from_director,
|
253 |
-
inputs=[num_fragments_input, prompt_input, image_input],
|
254 |
-
outputs=[storyboard_state]
|
255 |
-
).then(
|
256 |
-
fn=director_success,
|
257 |
-
inputs=[storyboard_state, image_input],
|
258 |
-
outputs=[storyboard_state, storyboard_to_show, ref_image_1_input]
|
259 |
-
)
|
260 |
-
|
261 |
-
photographer_button.click(
|
262 |
-
fn=run_keyframe_generation,
|
263 |
-
inputs=[storyboard_state, ref_image_1_input, ref_image_2_input, ref_task_1_input, ref_task_2_input],
|
264 |
-
outputs=[keyframe_log_output, keyframe_gallery_output, keyframe_images_state]
|
265 |
-
).then(
|
266 |
-
lambda paths: gr.update(value=paths),
|
267 |
-
inputs=[keyframe_images_state],
|
268 |
-
outputs=[keyframes_to_render]
|
269 |
-
)
|
270 |
-
|
271 |
-
animator_button.click(
|
272 |
-
fn=run_full_video_production,
|
273 |
-
inputs=[storyboard_state, keyframe_images_state, seed_number, cfg_slider],
|
274 |
-
outputs=[video_production_log_output, fragment_gallery_output, fragment_list_state]
|
275 |
-
).then(
|
276 |
-
lambda paths: gr.update(value=paths),
|
277 |
-
inputs=[fragment_list_state],
|
278 |
-
outputs=[final_fragments_display]
|
279 |
-
)
|
280 |
-
|
281 |
-
editor_button.click(
|
282 |
-
fn=concatenate_masterpiece,
|
283 |
-
inputs=[fragment_list_state],
|
284 |
-
outputs=[final_video_output]
|
285 |
-
)
|
286 |
-
|
287 |
-
if __name__ == "__main__":
|
288 |
-
demo.queue().launch(server_name="0.0.0.0", share=True)
|
|
|
1 |
+
# dreamo_helpers.py
|
2 |
+
# Módulo de serviço OTIMIZADO para o DreamO. Sem redimensionamento automático.
|
3 |
|
|
|
|
|
|
|
4 |
import os
|
5 |
+
import cv2
|
6 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
7 |
import numpy as np
|
8 |
+
from PIL import Image
|
|
|
9 |
import huggingface_hub
|
10 |
+
import gc
|
11 |
+
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
|
12 |
+
from torchvision.transforms.functional import normalize
|
13 |
+
from dreamo.dreamo_pipeline import DreamOPipeline
|
14 |
+
from dreamo.utils import img2tensor, tensor2img
|
15 |
+
from tools import BEN2
|
16 |
+
|
17 |
+
class Generator:
|
18 |
+
def __init__(self):
|
19 |
+
self.cpu_device = torch.device('cpu')
|
20 |
+
self.gpu_device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
21 |
+
|
22 |
+
print("Carregando modelos DreamO para a CPU...")
|
23 |
+
model_root = 'black-forest-labs/FLUX.1-dev'
|
24 |
+
self.dreamo_pipeline = DreamOPipeline.from_pretrained(model_root, torch_dtype=torch.bfloat16)
|
25 |
+
self.dreamo_pipeline.load_dreamo_model(self.cpu_device, use_turbo=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
self.bg_rm_model = BEN2.BEN_Base().to(self.cpu_device).eval()
|
28 |
+
huggingface_hub.hf_hub_download(repo_id='PramaLLC/BEN2', filename='BEN2_Base.pth', local_dir='models')
|
29 |
+
self.bg_rm_model.loadcheckpoints('models/BEN2_Base.pth')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
self.face_helper = FaceRestoreHelper(
|
32 |
+
upscale_factor=1, face_size=512, crop_ratio=(1, 1),
|
33 |
+
det_model='retinaface_resnet50', save_ext='png', device=self.cpu_device,
|
34 |
+
)
|
35 |
+
print("Modelos DreamO prontos (na CPU).")
|
36 |
+
|
37 |
+
def to_gpu(self):
|
38 |
+
print("Movendo modelos DreamO para a GPU...")
|
39 |
+
self.dreamo_pipeline.to(self.gpu_device)
|
40 |
+
self.bg_rm_model.to(self.gpu_device)
|
41 |
+
self.face_helper.device = self.gpu_device
|
42 |
+
if hasattr(self.face_helper, 'face_parse'): self.face_helper.face_parse.to(self.gpu_device)
|
43 |
+
if hasattr(self.face_helper, 'face_det'): self.face_helper.face_det.to(self.gpu_device)
|
44 |
+
print("Modelos DreamO na GPU.")
|
45 |
+
|
46 |
+
def to_cpu(self):
|
47 |
+
print("Descarregando modelos DreamO da GPU...")
|
48 |
+
self.dreamo_pipeline.to(self.cpu_device)
|
49 |
+
self.bg_rm_model.to(self.cpu_device)
|
50 |
+
self.face_helper.device = self.cpu_device
|
51 |
+
if hasattr(self.face_helper, 'face_det'): self.face_helper.face_det.to(self.cpu_device)
|
52 |
+
if hasattr(self.face_helper, 'face_parse'): self.face_helper.face_parse.to(self.cpu_device)
|
53 |
gc.collect()
|
54 |
+
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
55 |
+
print("GPU limpa após uso do DreamO.")
|
56 |
+
|
57 |
+
@torch.inference_mode()
|
58 |
+
def generate_image_with_gpu_management(self, ref_image1_np, ref_image2_np, ref_task1, ref_task2, prompt):
|
59 |
+
ref_conds = []
|
60 |
+
ref_images = [ref_image1_np, ref_image2_np]
|
61 |
+
ref_tasks = [ref_task1, ref_task2]
|
62 |
+
|
63 |
+
for idx, (ref_image, ref_task) in enumerate(zip(ref_images, ref_tasks)):
|
64 |
+
if ref_image is not None:
|
65 |
+
# LÓGICA DE REDIMENSIONAMENTO REMOVIDA
|
66 |
+
if ref_task == "id":
|
67 |
+
ref_image = self.get_align_face(ref_image)
|
68 |
+
elif ref_task != "style":
|
69 |
+
ref_image = self.bg_rm_model.inference(Image.fromarray(ref_image))
|
70 |
+
|
71 |
+
ref_image_tensor = img2tensor(np.array(ref_image), bgr2rgb=False).unsqueeze(0) / 255.0
|
72 |
+
ref_image_tensor = (2 * ref_image_tensor - 1.0).to(self.gpu_device, dtype=torch.bfloat16)
|
73 |
+
ref_conds.append({'img': ref_image_tensor, 'task': ref_task, 'idx': idx + 1})
|
74 |
+
|
75 |
+
image = self.dreamo_pipeline(
|
76 |
+
prompt=prompt, width=1024, height=1024,
|
77 |
+
num_inference_steps=12, guidance_scale=4.5,
|
78 |
+
ref_conds=ref_conds, generator=torch.Generator(device="cpu").manual_seed(42)
|
79 |
+
).images[0]
|
80 |
+
return image
|
81 |
+
|
82 |
+
@torch.no_grad()
|
83 |
+
def get_align_face(self, img):
|
84 |
+
self.face_helper.clean_all()
|
85 |
+
image_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
86 |
+
self.face_helper.read_image(image_bgr)
|
87 |
+
self.face_helper.get_face_landmarks_5(only_center_face=True)
|
88 |
+
self.face_helper.align_warp_face()
|
89 |
+
if len(self.face_helper.cropped_faces) == 0: return None
|
90 |
+
align_face = self.face_helper.cropped_faces[0]
|
91 |
+
input_tensor = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0
|
92 |
+
input_tensor = input_tensor.to(self.gpu_device)
|
93 |
+
parsing_out = self.face_helper.face_parse(normalize(input_tensor, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0]
|
94 |
+
parsing_out = parsing_out.argmax(dim=1, keepdim=True)
|
95 |
+
bg_label = [0, 16, 18, 7, 8, 9, 14, 15]
|
96 |
+
bg = sum(parsing_out == i for i in bg_label).bool()
|
97 |
+
white_image = torch.ones_like(input_tensor)
|
98 |
+
face_features_image = torch.where(bg, white_image, input_tensor)
|
99 |
+
return tensor2img(face_features_image, rgb2bgr=False)
|
100 |
+
|
101 |
+
# --- Instância Singleton ---
|
102 |
+
print("Inicializando o Pintor de Cenas (DreamO Helper)...")
|
103 |
+
hf_token = os.getenv('HF_TOKEN')
|
104 |
+
if hf_token: huggingface_hub.login(token=hf_token)
|
105 |
+
dreamo_generator_singleton = Generator()
|
106 |
+
print("Pintor de Cenas (DreamO Helper) pronto.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|