# dreamo_helpers.py # Módulo de serviço para o DreamO, com gestão de memória e aceitando uma lista dinâmica de referências. import os import cv2 import torch import numpy as np from PIL import Image import huggingface_hub import gc from facexlib.utils.face_restoration_helper import FaceRestoreHelper from torchvision.transforms.functional import normalize from dreamo.dreamo_pipeline import DreamOPipeline from dreamo.utils import img2tensor, tensor2img from tools import BEN2 class Generator: def __init__(self): self.cpu_device = torch.device('cpu') self.gpu_device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print("Carregando modelos DreamO para a CPU...") model_root = 'black-forest-labs/FLUX.1-dev' self.dreamo_pipeline = DreamOPipeline.from_pretrained(model_root, torch_dtype=torch.bfloat16) self.dreamo_pipeline.load_dreamo_model(self.cpu_device, use_turbo=True) self.bg_rm_model = BEN2.BEN_Base().to(self.cpu_device).eval() huggingface_hub.hf_hub_download(repo_id='PramaLLC/BEN2', filename='BEN2_Base.pth', local_dir='models') self.bg_rm_model.loadcheckpoints('models/BEN2_Base.pth') self.face_helper = FaceRestoreHelper( upscale_factor=1, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', device=self.cpu_device, ) print("Modelos DreamO prontos (na CPU).") def to_gpu(self): if self.gpu_device.type == 'cpu': return print("Movendo modelos DreamO para a GPU...") self.dreamo_pipeline.to(self.gpu_device) self.bg_rm_model.to(self.gpu_device) self.face_helper.device = self.gpu_device self.dreamo_pipeline.t5_embedding.to(self.gpu_device) self.dreamo_pipeline.task_embedding.to(self.gpu_device) self.dreamo_pipeline.idx_embedding.to(self.gpu_device) if hasattr(self.face_helper, 'face_parse'): self.face_helper.face_parse.to(self.gpu_device) if hasattr(self.face_helper, 'face_det'): self.face_helper.face_det.to(self.gpu_device) print("Modelos DreamO na GPU.") def to_cpu(self): if self.gpu_device.type == 'cpu': return print("Descarregando modelos DreamO da GPU...") self.dreamo_pipeline.to(self.cpu_device) self.bg_rm_model.to(self.cpu_device) self.face_helper.device = self.cpu_device self.dreamo_pipeline.t5_embedding.to(self.cpu_device) self.dreamo_pipeline.task_embedding.to(self.cpu_device) self.dreamo_pipeline.idx_embedding.to(self.cpu_device) if hasattr(self.face_helper, 'face_det'): self.face_helper.face_det.to(self.cpu_device) if hasattr(self.face_helper, 'face_parse'): self.face_helper.face_parse.to(self.cpu_device) gc.collect() if torch.cuda.is_available(): torch.cuda.empty_cache() @torch.inference_mode() # <<<<< MODIFICAÇÃO PRINCIPAL: Aceita uma lista de dicionários de referência >>>>> def generate_image_with_gpu_management(self, reference_items, prompt, width, height): ref_conds = [] for idx, item in enumerate(reference_items): ref_image_np = item.get('image_np') ref_task = item.get('task') if ref_image_np is not None: if ref_task == "id": ref_image = self.get_align_face(ref_image_np) elif ref_task != "style": ref_image = self.bg_rm_model.inference(Image.fromarray(ref_image_np)) else: # Style usa a imagem original ref_image = ref_image_np ref_image_tensor = img2tensor(np.array(ref_image), bgr2rgb=False).unsqueeze(0) / 255.0 ref_image_tensor = (2 * ref_image_tensor - 1.0).to(self.gpu_device, dtype=torch.bfloat16) # O modelo DreamO espera o índice começando em 1 ref_conds.append({'img': ref_image_tensor, 'task': ref_task, 'idx': idx + 1}) image = self.dreamo_pipeline( prompt=prompt, width=width, height=height, num_inference_steps=12, guidance_scale=4.5, ref_conds=ref_conds, generator=torch.Generator(device="cpu").manual_seed(42) ).images[0] return image @torch.no_grad() def get_align_face(self, img): # ... (lógica inalterada) self.face_helper.clean_all() image_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) self.face_helper.read_image(image_bgr) self.face_helper.get_face_landmarks_5(only_center_face=True) self.face_helper.align_warp_face() if len(self.face_helper.cropped_faces) == 0: return None align_face = self.face_helper.cropped_faces[0] input_tensor = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0 input_tensor = input_tensor.to(self.gpu_device) parsing_out = self.face_helper.face_parse(normalize(input_tensor, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0] parsing_out = parsing_out.argmax(dim=1, keepdim=True) bg_label = [0, 16, 18, 7, 8, 9, 14, 15] bg = sum(parsing_out == i for i in bg_label).bool() white_image = torch.ones_like(input_tensor) face_features_image = torch.where(bg, white_image, input_tensor) return tensor2img(face_features_image, rgb2bgr=False) # --- Instância Singleton --- print("Inicializando o Pintor de Cenas (DreamO Helper)...") hf_token = os.getenv('HF_TOKEN') if hf_token: huggingface_hub.login(token=hf_token) dreamo_generator_singleton = Generator() print("Pintor de Cenas (DreamO Helper) pronto.")