Spaces:
Running
Running
File size: 22,217 Bytes
76b9762 7254052 76b9762 7254052 76b9762 8dd0381 76b9762 b4669ea 76b9762 8dd0381 76b9762 8dd0381 76b9762 8dd0381 76b9762 8dd0381 76b9762 8dd0381 76b9762 8dd0381 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 |
"""
应用程序配置模块
"""
import datetime
import json
from typing import Any, Dict, List, Type
from pydantic import ValidationError, ValidationInfo, field_validator
from pydantic_settings import BaseSettings
from sqlalchemy import insert, select, update
def parse_comma_separated_string(v: Any) -> List[str]:
"""解析逗号分隔的字符串为字符串列表"""
# Handle None or empty values
if v is None or v == "":
return []
if isinstance(v, list):
return [str(item).strip() for item in v if str(item).strip()]
if isinstance(v, str):
# Handle empty string or whitespace-only string
if not v.strip():
return []
try:
# Attempt to parse as JSON list first, in case it's provided as such
parsed = json.loads(v)
if isinstance(parsed, list):
return [str(item).strip() for item in parsed if str(item).strip()]
except json.JSONDecodeError:
pass # Not a JSON string, proceed to comma split
# Split by comma and filter out empty strings
return [token.strip() for token in v.split(',') if token.strip()]
# For any other type, try to convert to string and process
try:
str_val = str(v)
if not str_val or str_val.strip() == "":
return []
return [token.strip() for token in str_val.split(',') if token.strip()]
except Exception:
return []
from app.core.constants import (
API_VERSION,
DEFAULT_CREATE_IMAGE_MODEL,
DEFAULT_FILTER_MODELS,
DEFAULT_MODEL,
DEFAULT_SAFETY_SETTINGS,
DEFAULT_STREAM_CHUNK_SIZE,
DEFAULT_STREAM_LONG_TEXT_THRESHOLD,
DEFAULT_STREAM_MAX_DELAY,
DEFAULT_STREAM_MIN_DELAY,
DEFAULT_STREAM_SHORT_TEXT_THRESHOLD,
DEFAULT_TIMEOUT,
MAX_RETRIES,
)
from app.log.logger import Logger
class Settings(BaseSettings):
# 数据库配置
DATABASE_TYPE: str = "sqlite" # sqlite 或 mysql
SQLITE_DATABASE: str = "default_db"
MYSQL_HOST: str = ""
MYSQL_PORT: int = 3306
MYSQL_USER: str = ""
MYSQL_PASSWORD: str = ""
MYSQL_DATABASE: str = ""
MYSQL_SOCKET: str = ""
# 验证 MySQL 配置
@field_validator(
"MYSQL_HOST", "MYSQL_PORT", "MYSQL_USER", "MYSQL_PASSWORD", "MYSQL_DATABASE"
)
def validate_mysql_config(cls, v: Any, info: ValidationInfo) -> Any:
if info.data.get("DATABASE_TYPE") == "mysql":
if v is None or v == "":
raise ValueError(
"MySQL configuration is required when DATABASE_TYPE is 'mysql'"
)
return v
# API相关配置
API_KEYS: str = ""
ALLOWED_TOKENS: str = ""
@field_validator("API_KEYS")
@classmethod
def validate_api_keys(cls, v: str) -> str:
if not v or v.strip() == "":
raise ValueError("API_KEYS cannot be empty. Please provide at least one API key.")
return v
@property
def api_keys_list(self) -> List[str]:
"""将API_KEYS字符串转换为列表"""
return parse_comma_separated_string(self.API_KEYS)
@property
def allowed_tokens_list(self) -> List[str]:
"""将ALLOWED_TOKENS字符串转换为列表"""
return parse_comma_separated_string(self.ALLOWED_TOKENS)
BASE_URL: str = f"https://generativelanguage.googleapis.com/{API_VERSION}"
AUTH_TOKEN: str = ""
MAX_FAILURES: int = 3
TEST_MODEL: str = DEFAULT_MODEL
TIME_OUT: int = DEFAULT_TIMEOUT
MAX_RETRIES: int = MAX_RETRIES
PROXIES: List[str] = []
PROXIES_USE_CONSISTENCY_HASH_BY_API_KEY: bool = True # 是否使用一致性哈希来选择代理
VERTEX_API_KEYS: List[str] = []
VERTEX_EXPRESS_BASE_URL: str = "https://aiplatform.googleapis.com/v1beta1/publishers/google"
# 智能路由配置
URL_NORMALIZATION_ENABLED: bool = False # 是否启用智能路由映射功能
# 模型相关配置
SEARCH_MODELS: List[str] = ["gemini-2.0-flash-exp"]
IMAGE_MODELS: List[str] = ["gemini-2.0-flash-exp"]
FILTERED_MODELS: List[str] = DEFAULT_FILTER_MODELS
TOOLS_CODE_EXECUTION_ENABLED: bool = False
@field_validator("TOOLS_CODE_EXECUTION_ENABLED", mode="before")
@classmethod
def parse_boolean(cls, v: Any) -> bool:
if isinstance(v, str):
return v.lower() == "true"
return v
SHOW_SEARCH_LINK: bool = True
SHOW_THINKING_PROCESS: bool = True
THINKING_MODELS: List[str] = []
THINKING_BUDGET_MAP: Dict[str, float] = {}
# TTS相关配置
TTS_MODEL: str = "gemini-2.5-flash-preview-tts"
TTS_VOICE_NAME: str = "Zephyr"
TTS_SPEED: str = "normal"
# 图像生成相关配置
PAID_KEY: str = ""
CREATE_IMAGE_MODEL: str = DEFAULT_CREATE_IMAGE_MODEL
UPLOAD_PROVIDER: str = "smms"
SMMS_SECRET_TOKEN: str = ""
PICGO_API_KEY: str = ""
CLOUDFLARE_IMGBED_URL: str = ""
CLOUDFLARE_IMGBED_AUTH_CODE: str = ""
# 流式输出优化器配置
STREAM_OPTIMIZER_ENABLED: bool = False
STREAM_MIN_DELAY: float = DEFAULT_STREAM_MIN_DELAY
STREAM_MAX_DELAY: float = DEFAULT_STREAM_MAX_DELAY
STREAM_SHORT_TEXT_THRESHOLD: int = DEFAULT_STREAM_SHORT_TEXT_THRESHOLD
STREAM_LONG_TEXT_THRESHOLD: int = DEFAULT_STREAM_LONG_TEXT_THRESHOLD
STREAM_CHUNK_SIZE: int = DEFAULT_STREAM_CHUNK_SIZE
# 假流式配置 (Fake Streaming Configuration)
FAKE_STREAM_ENABLED: bool = False # 是否启用假流式输出
FAKE_STREAM_EMPTY_DATA_INTERVAL_SECONDS: int = 5 # 假流式发送空数据的间隔时间(秒)
# 调度器配置
CHECK_INTERVAL_HOURS: int = 1 # 默认检查间隔为1小时
TIMEZONE: str = "Asia/Shanghai" # 默认时区
# github
GITHUB_REPO_OWNER: str = "snailyp"
GITHUB_REPO_NAME: str = "gemini-balance"
# 日志配置
LOG_LEVEL: str = "INFO"
AUTO_DELETE_ERROR_LOGS_ENABLED: bool = True
AUTO_DELETE_ERROR_LOGS_DAYS: int = 7
AUTO_DELETE_REQUEST_LOGS_ENABLED: bool = False
AUTO_DELETE_REQUEST_LOGS_DAYS: int = 30
SAFETY_SETTINGS: List[Dict[str, str]] = DEFAULT_SAFETY_SETTINGS
def __init__(self, **kwargs):
super().__init__(**kwargs)
# 设置默认AUTH_TOKEN(如果未提供)
if not self.AUTH_TOKEN and self.ALLOWED_TOKENS:
tokens_list = self.allowed_tokens_list
if tokens_list:
self.AUTH_TOKEN = tokens_list[0]
# 创建全局配置实例
settings = Settings()
def get_settings() -> Settings:
"""获取配置实例"""
return settings
def _parse_db_value(key: str, db_value: str, target_type: Type) -> Any:
"""尝试将数据库字符串值解析为目标 Python 类型"""
from app.log.logger import get_config_logger
logger = get_config_logger()
try:
# 处理 List[str]
if target_type == List[str]:
try:
parsed = json.loads(db_value)
if isinstance(parsed, list):
return [str(item) for item in parsed]
except json.JSONDecodeError:
return [item.strip() for item in db_value.split(",") if item.strip()]
logger.warning(
f"Could not parse '{db_value}' as List[str] for key '{key}', falling back to comma split or empty list."
)
return [item.strip() for item in db_value.split(",") if item.strip()]
# 处理 Dict[str, float]
elif target_type == Dict[str, float]:
parsed_dict = {}
try:
parsed = json.loads(db_value)
if isinstance(parsed, dict):
parsed_dict = {str(k): float(v) for k, v in parsed.items()}
else:
logger.warning(
f"Parsed DB value for key '{key}' is not a dictionary type. Value: {db_value}"
)
except (json.JSONDecodeError, ValueError, TypeError) as e1:
if isinstance(e1, json.JSONDecodeError) and "'" in db_value:
logger.warning(
f"Failed initial JSON parse for key '{key}'. Attempting to replace single quotes. Error: {e1}"
)
try:
corrected_db_value = db_value.replace("'", '"')
parsed = json.loads(corrected_db_value)
if isinstance(parsed, dict):
parsed_dict = {str(k): float(v) for k, v in parsed.items()}
else:
logger.warning(
f"Parsed DB value (after quote replacement) for key '{key}' is not a dictionary type. Value: {corrected_db_value}"
)
except (json.JSONDecodeError, ValueError, TypeError) as e2:
logger.error(
f"Could not parse '{db_value}' as Dict[str, float] for key '{key}' even after replacing quotes: {e2}. Returning empty dict."
)
else:
logger.error(
f"Could not parse '{db_value}' as Dict[str, float] for key '{key}': {e1}. Returning empty dict."
)
return parsed_dict
# 处理 List[Dict[str, str]]
elif target_type == List[Dict[str, str]]:
try:
parsed = json.loads(db_value)
if isinstance(parsed, list):
# 验证列表中的每个元素是否为字典,并且键和值都是字符串
valid = all(
isinstance(item, dict)
and all(isinstance(k, str) for k in item.keys())
and all(isinstance(v, str) for v in item.values())
for item in parsed
)
if valid:
return parsed
else:
logger.warning(
f"Invalid structure in List[Dict[str, str]] for key '{key}'. Value: {db_value}"
)
return []
else:
logger.warning(
f"Parsed DB value for key '{key}' is not a list type. Value: {db_value}"
)
return []
except json.JSONDecodeError:
logger.error(
f"Could not parse '{db_value}' as JSON for List[Dict[str, str]] for key '{key}'. Returning empty list."
)
return []
except Exception as e:
logger.error(
f"Error parsing List[Dict[str, str]] for key '{key}': {e}. Value: {db_value}. Returning empty list."
)
return []
# 处理 bool
elif target_type == bool:
return db_value.lower() in ("true", "1", "yes", "on")
# 处理 int
elif target_type == int:
return int(db_value)
# 处理 float
elif target_type == float:
return float(db_value)
# 默认为 str 或其他 pydantic 能直接处理的类型
else:
return db_value
except (ValueError, TypeError, json.JSONDecodeError) as e:
logger.warning(
f"Failed to parse db_value '{db_value}' for key '{key}' as type {target_type}: {e}. Using original string value."
)
return db_value # 解析失败则返回原始字符串
async def sync_initial_settings():
"""
应用启动时同步配置:
1. 从数据库加载设置。
2. 将数据库设置合并到内存 settings (数据库优先)。
3. 将最终的内存 settings 同步回数据库。
"""
from app.log.logger import get_config_logger
logger = get_config_logger()
# 延迟导入以避免循环依赖和确保数据库连接已初始化
from app.database.connection import database
from app.database.models import Settings as SettingsModel
global settings
logger.info("Starting initial settings synchronization...")
if not database.is_connected:
try:
await database.connect()
logger.info("Database connection established for initial sync.")
except Exception as e:
logger.error(
f"Failed to connect to database for initial settings sync: {e}. Skipping sync."
)
return
try:
# 1. 从数据库加载设置
db_settings_raw: List[Dict[str, Any]] = []
try:
query = select(SettingsModel.key, SettingsModel.value)
results = await database.fetch_all(query)
db_settings_raw = [
{"key": row["key"], "value": row["value"]} for row in results
]
logger.info(f"Fetched {len(db_settings_raw)} settings from database.")
except Exception as e:
logger.error(
f"Failed to fetch settings from database: {e}. Proceeding with environment/dotenv settings."
)
# 即使数据库读取失败,也要继续执行,确保基于 env/dotenv 的配置能同步到数据库
db_settings_map: Dict[str, str] = {
s["key"]: s["value"] for s in db_settings_raw
}
# 2. 将数据库设置合并到内存 settings (数据库优先)
updated_in_memory = False
for key, db_value in db_settings_map.items():
if key == "DATABASE_TYPE":
logger.debug(
f"Skipping update of '{key}' in memory from database. "
"This setting is controlled by environment/dotenv."
)
continue
if hasattr(settings, key):
target_type = Settings.__annotations__.get(key)
if target_type:
try:
parsed_db_value = _parse_db_value(key, db_value, target_type)
memory_value = getattr(settings, key)
# 比较解析后的值和内存中的值
# 注意:对于列表等复杂类型,直接比较可能不够健壮,但这里简化处理
if parsed_db_value != memory_value:
# 检查类型是否匹配,以防解析函数返回了不兼容的类型
type_match = False
if target_type == List[str] and isinstance(
parsed_db_value, list
):
type_match = True
elif target_type == Dict[str, float] and isinstance(
parsed_db_value, dict
):
type_match = True
elif target_type not in (
List[str],
Dict[str, float],
) and isinstance(parsed_db_value, target_type):
type_match = True
if type_match:
setattr(settings, key, parsed_db_value)
logger.debug(
f"Updated setting '{key}' in memory from database value ({target_type})."
)
updated_in_memory = True
else:
logger.warning(
f"Parsed DB value type mismatch for key '{key}'. Expected {target_type}, got {type(parsed_db_value)}. Skipping update."
)
except Exception as e:
logger.error(
f"Error processing database setting for key '{key}': {e}"
)
else:
logger.warning(
f"Database setting '{key}' not found in Settings model definition. Ignoring."
)
# 如果内存中有更新,重新验证 Pydantic 模型(可选但推荐)
if updated_in_memory:
try:
# 重新加载以确保类型转换和验证
settings = Settings(**settings.model_dump())
logger.info(
"Settings object re-validated after merging database values."
)
except ValidationError as e:
logger.error(
f"Validation error after merging database settings: {e}. Settings might be inconsistent."
)
# 3. 将最终的内存 settings 同步回数据库
final_memory_settings = settings.model_dump()
settings_to_update: List[Dict[str, Any]] = []
settings_to_insert: List[Dict[str, Any]] = []
now = datetime.datetime.now(datetime.timezone.utc)
existing_db_keys = set(db_settings_map.keys())
for key, value in final_memory_settings.items():
if key == "DATABASE_TYPE":
logger.debug(
f"Skipping synchronization of '{key}' to database. "
"This setting is controlled by environment/dotenv."
)
continue
# 序列化值为字符串或 JSON 字符串
if isinstance(value, (list, dict)):
db_value = json.dumps(
value, ensure_ascii=False
)
elif isinstance(value, bool):
db_value = str(value).lower()
elif value is None:
db_value = ""
else:
db_value = str(value)
data = {
"key": key,
"value": db_value,
"description": f"{key} configuration setting",
"updated_at": now,
}
if key in existing_db_keys:
# 仅当值与数据库中的不同时才更新
if db_settings_map[key] != db_value:
settings_to_update.append(data)
else:
# 如果键不在数据库中,则插入
data["created_at"] = now
settings_to_insert.append(data)
# 在事务中执行批量插入和更新
if settings_to_insert or settings_to_update:
try:
async with database.transaction():
if settings_to_insert:
# 获取现有描述以避免覆盖
query_existing = select(
SettingsModel.key, SettingsModel.description
).where(
SettingsModel.key.in_(
[s["key"] for s in settings_to_insert]
)
)
existing_desc = {
row["key"]: row["description"]
for row in await database.fetch_all(query_existing)
}
for item in settings_to_insert:
item["description"] = existing_desc.get(
item["key"], item["description"]
)
query_insert = insert(SettingsModel).values(settings_to_insert)
await database.execute(query=query_insert)
logger.info(
f"Synced (inserted) {len(settings_to_insert)} settings to database."
)
if settings_to_update:
# 获取现有描述以避免覆盖
query_existing = select(
SettingsModel.key, SettingsModel.description
).where(
SettingsModel.key.in_(
[s["key"] for s in settings_to_update]
)
)
existing_desc = {
row["key"]: row["description"]
for row in await database.fetch_all(query_existing)
}
for setting_data in settings_to_update:
setting_data["description"] = existing_desc.get(
setting_data["key"], setting_data["description"]
)
query_update = (
update(SettingsModel)
.where(SettingsModel.key == setting_data["key"])
.values(
value=setting_data["value"],
description=setting_data["description"],
updated_at=setting_data["updated_at"],
)
)
await database.execute(query=query_update)
logger.info(
f"Synced (updated) {len(settings_to_update)} settings to database."
)
except Exception as e:
logger.error(
f"Failed to sync settings to database during startup: {str(e)}"
)
else:
logger.info(
"No setting changes detected between memory and database during initial sync."
)
# 刷新日志等级
Logger.update_log_levels(final_memory_settings.get("LOG_LEVEL"))
except Exception as e:
logger.error(f"An unexpected error occurred during initial settings sync: {e}")
finally:
if database.is_connected:
try:
pass
except Exception as e:
logger.error(f"Error disconnecting database after initial sync: {e}")
logger.info("Initial settings synchronization finished.")
|