File size: 22,217 Bytes
76b9762
 
 
 
 
 
7254052
76b9762
7254052
76b9762
 
 
8dd0381
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76b9762
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4669ea
76b9762
 
8dd0381
76b9762
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dd0381
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76b9762
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dd0381
 
 
 
 
 
 
76b9762
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dd0381
 
 
76b9762
 
 
 
 
8dd0381
 
 
 
76b9762
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dd0381
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
"""
应用程序配置模块
"""

import datetime
import json
from typing import Any, Dict, List, Type

from pydantic import ValidationError, ValidationInfo, field_validator
from pydantic_settings import BaseSettings
from sqlalchemy import insert, select, update


def parse_comma_separated_string(v: Any) -> List[str]:
    """解析逗号分隔的字符串为字符串列表"""
    # Handle None or empty values
    if v is None or v == "":
        return []
    
    if isinstance(v, list):
        return [str(item).strip() for item in v if str(item).strip()]
    
    if isinstance(v, str):
        # Handle empty string or whitespace-only string
        if not v.strip():
            return []
        
        try:
            # Attempt to parse as JSON list first, in case it's provided as such
            parsed = json.loads(v)
            if isinstance(parsed, list):
                return [str(item).strip() for item in parsed if str(item).strip()]
        except json.JSONDecodeError:
            pass # Not a JSON string, proceed to comma split
        
        # Split by comma and filter out empty strings
        return [token.strip() for token in v.split(',') if token.strip()]
    
    # For any other type, try to convert to string and process
    try:
        str_val = str(v)
        if not str_val or str_val.strip() == "":
            return []
        return [token.strip() for token in str_val.split(',') if token.strip()]
    except Exception:
        return []

from app.core.constants import (
    API_VERSION,
    DEFAULT_CREATE_IMAGE_MODEL,
    DEFAULT_FILTER_MODELS,
    DEFAULT_MODEL,
    DEFAULT_SAFETY_SETTINGS,
    DEFAULT_STREAM_CHUNK_SIZE,
    DEFAULT_STREAM_LONG_TEXT_THRESHOLD,
    DEFAULT_STREAM_MAX_DELAY,
    DEFAULT_STREAM_MIN_DELAY,
    DEFAULT_STREAM_SHORT_TEXT_THRESHOLD,
    DEFAULT_TIMEOUT,
    MAX_RETRIES,
)
from app.log.logger import Logger


class Settings(BaseSettings):
    # 数据库配置
    DATABASE_TYPE: str = "sqlite"  # sqlite 或 mysql
    SQLITE_DATABASE: str = "default_db"
    MYSQL_HOST: str = ""
    MYSQL_PORT: int = 3306
    MYSQL_USER: str = ""
    MYSQL_PASSWORD: str = ""
    MYSQL_DATABASE: str = ""
    MYSQL_SOCKET: str = ""

    # 验证 MySQL 配置
    @field_validator(
        "MYSQL_HOST", "MYSQL_PORT", "MYSQL_USER", "MYSQL_PASSWORD", "MYSQL_DATABASE"
    )
    def validate_mysql_config(cls, v: Any, info: ValidationInfo) -> Any:
        if info.data.get("DATABASE_TYPE") == "mysql":
            if v is None or v == "":
                raise ValueError(
                    "MySQL configuration is required when DATABASE_TYPE is 'mysql'"
                )
        return v

    # API相关配置
    API_KEYS: str = ""
    ALLOWED_TOKENS: str = ""
    
    @field_validator("API_KEYS")
    @classmethod
    def validate_api_keys(cls, v: str) -> str:
        if not v or v.strip() == "":
            raise ValueError("API_KEYS cannot be empty. Please provide at least one API key.")
        return v
    
    @property
    def api_keys_list(self) -> List[str]:
        """将API_KEYS字符串转换为列表"""
        return parse_comma_separated_string(self.API_KEYS)
    
    @property
    def allowed_tokens_list(self) -> List[str]:
        """将ALLOWED_TOKENS字符串转换为列表"""
        return parse_comma_separated_string(self.ALLOWED_TOKENS)
    BASE_URL: str = f"https://generativelanguage.googleapis.com/{API_VERSION}"
    AUTH_TOKEN: str = ""
    MAX_FAILURES: int = 3
    TEST_MODEL: str = DEFAULT_MODEL
    TIME_OUT: int = DEFAULT_TIMEOUT
    MAX_RETRIES: int = MAX_RETRIES
    PROXIES: List[str] = []
    PROXIES_USE_CONSISTENCY_HASH_BY_API_KEY: bool = True  # 是否使用一致性哈希来选择代理
    VERTEX_API_KEYS: List[str] = []
    VERTEX_EXPRESS_BASE_URL: str = "https://aiplatform.googleapis.com/v1beta1/publishers/google"

    # 智能路由配置
    URL_NORMALIZATION_ENABLED: bool = False  # 是否启用智能路由映射功能

    # 模型相关配置
    SEARCH_MODELS: List[str] = ["gemini-2.0-flash-exp"]
    IMAGE_MODELS: List[str] = ["gemini-2.0-flash-exp"]
    FILTERED_MODELS: List[str] = DEFAULT_FILTER_MODELS
    TOOLS_CODE_EXECUTION_ENABLED: bool = False

    @field_validator("TOOLS_CODE_EXECUTION_ENABLED", mode="before")
    @classmethod
    def parse_boolean(cls, v: Any) -> bool:
        if isinstance(v, str):
            return v.lower() == "true"
        return v
    SHOW_SEARCH_LINK: bool = True
    SHOW_THINKING_PROCESS: bool = True
    THINKING_MODELS: List[str] = []
    THINKING_BUDGET_MAP: Dict[str, float] = {}

    # TTS相关配置
    TTS_MODEL: str = "gemini-2.5-flash-preview-tts"
    TTS_VOICE_NAME: str = "Zephyr"
    TTS_SPEED: str = "normal"

    # 图像生成相关配置
    PAID_KEY: str = ""
    CREATE_IMAGE_MODEL: str = DEFAULT_CREATE_IMAGE_MODEL
    UPLOAD_PROVIDER: str = "smms"
    SMMS_SECRET_TOKEN: str = ""
    PICGO_API_KEY: str = ""
    CLOUDFLARE_IMGBED_URL: str = ""
    CLOUDFLARE_IMGBED_AUTH_CODE: str = ""

    # 流式输出优化器配置
    STREAM_OPTIMIZER_ENABLED: bool = False
    STREAM_MIN_DELAY: float = DEFAULT_STREAM_MIN_DELAY
    STREAM_MAX_DELAY: float = DEFAULT_STREAM_MAX_DELAY
    STREAM_SHORT_TEXT_THRESHOLD: int = DEFAULT_STREAM_SHORT_TEXT_THRESHOLD
    STREAM_LONG_TEXT_THRESHOLD: int = DEFAULT_STREAM_LONG_TEXT_THRESHOLD
    STREAM_CHUNK_SIZE: int = DEFAULT_STREAM_CHUNK_SIZE

    # 假流式配置 (Fake Streaming Configuration)
    FAKE_STREAM_ENABLED: bool = False  # 是否启用假流式输出
    FAKE_STREAM_EMPTY_DATA_INTERVAL_SECONDS: int = 5  # 假流式发送空数据的间隔时间(秒)

    # 调度器配置
    CHECK_INTERVAL_HOURS: int = 1  # 默认检查间隔为1小时
    TIMEZONE: str = "Asia/Shanghai"  # 默认时区

    # github
    GITHUB_REPO_OWNER: str = "snailyp"
    GITHUB_REPO_NAME: str = "gemini-balance"

    # 日志配置
    LOG_LEVEL: str = "INFO"
    AUTO_DELETE_ERROR_LOGS_ENABLED: bool = True
    AUTO_DELETE_ERROR_LOGS_DAYS: int = 7
    AUTO_DELETE_REQUEST_LOGS_ENABLED: bool = False
    AUTO_DELETE_REQUEST_LOGS_DAYS: int = 30
    SAFETY_SETTINGS: List[Dict[str, str]] = DEFAULT_SAFETY_SETTINGS


    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        # 设置默认AUTH_TOKEN(如果未提供)
        if not self.AUTH_TOKEN and self.ALLOWED_TOKENS:
            tokens_list = self.allowed_tokens_list
            if tokens_list:
                self.AUTH_TOKEN = tokens_list[0]


# 创建全局配置实例
settings = Settings()

def get_settings() -> Settings:
    """获取配置实例"""
    return settings


def _parse_db_value(key: str, db_value: str, target_type: Type) -> Any:
    """尝试将数据库字符串值解析为目标 Python 类型"""
    from app.log.logger import get_config_logger

    logger = get_config_logger()
    try:
        # 处理 List[str]
        if target_type == List[str]:
            try:
                parsed = json.loads(db_value)
                if isinstance(parsed, list):
                    return [str(item) for item in parsed]
            except json.JSONDecodeError:
                return [item.strip() for item in db_value.split(",") if item.strip()]
            logger.warning(
                f"Could not parse '{db_value}' as List[str] for key '{key}', falling back to comma split or empty list."
            )
            return [item.strip() for item in db_value.split(",") if item.strip()]
        # 处理 Dict[str, float]
        elif target_type == Dict[str, float]:
            parsed_dict = {}
            try:
                parsed = json.loads(db_value)
                if isinstance(parsed, dict):
                    parsed_dict = {str(k): float(v) for k, v in parsed.items()}
                else:
                    logger.warning(
                        f"Parsed DB value for key '{key}' is not a dictionary type. Value: {db_value}"
                    )
            except (json.JSONDecodeError, ValueError, TypeError) as e1:
                if isinstance(e1, json.JSONDecodeError) and "'" in db_value:
                    logger.warning(
                        f"Failed initial JSON parse for key '{key}'. Attempting to replace single quotes. Error: {e1}"
                    )
                    try:
                        corrected_db_value = db_value.replace("'", '"')
                        parsed = json.loads(corrected_db_value)
                        if isinstance(parsed, dict):
                            parsed_dict = {str(k): float(v) for k, v in parsed.items()}
                        else:
                            logger.warning(
                                f"Parsed DB value (after quote replacement) for key '{key}' is not a dictionary type. Value: {corrected_db_value}"
                            )
                    except (json.JSONDecodeError, ValueError, TypeError) as e2:
                        logger.error(
                            f"Could not parse '{db_value}' as Dict[str, float] for key '{key}' even after replacing quotes: {e2}. Returning empty dict."
                        )
                else:
                    logger.error(
                        f"Could not parse '{db_value}' as Dict[str, float] for key '{key}': {e1}. Returning empty dict."
                    )
            return parsed_dict
        # 处理 List[Dict[str, str]]
        elif target_type == List[Dict[str, str]]:
            try:
                parsed = json.loads(db_value)
                if isinstance(parsed, list):
                    # 验证列表中的每个元素是否为字典,并且键和值都是字符串
                    valid = all(
                        isinstance(item, dict)
                        and all(isinstance(k, str) for k in item.keys())
                        and all(isinstance(v, str) for v in item.values())
                        for item in parsed
                    )
                    if valid:
                        return parsed
                    else:
                        logger.warning(
                            f"Invalid structure in List[Dict[str, str]] for key '{key}'. Value: {db_value}"
                        )
                        return []
                else:
                    logger.warning(
                        f"Parsed DB value for key '{key}' is not a list type. Value: {db_value}"
                    )
                    return []
            except json.JSONDecodeError:
                logger.error(
                    f"Could not parse '{db_value}' as JSON for List[Dict[str, str]] for key '{key}'. Returning empty list."
                )
                return []
            except Exception as e:
                logger.error(
                    f"Error parsing List[Dict[str, str]] for key '{key}': {e}. Value: {db_value}. Returning empty list."
                )
                return []
        # 处理 bool
        elif target_type == bool:
            return db_value.lower() in ("true", "1", "yes", "on")
        # 处理 int
        elif target_type == int:
            return int(db_value)
        # 处理 float
        elif target_type == float:
            return float(db_value)
        # 默认为 str 或其他 pydantic 能直接处理的类型
        else:
            return db_value
    except (ValueError, TypeError, json.JSONDecodeError) as e:
        logger.warning(
            f"Failed to parse db_value '{db_value}' for key '{key}' as type {target_type}: {e}. Using original string value."
        )
        return db_value  # 解析失败则返回原始字符串


async def sync_initial_settings():
    """
    应用启动时同步配置:
    1. 从数据库加载设置。
    2. 将数据库设置合并到内存 settings (数据库优先)。
    3. 将最终的内存 settings 同步回数据库。
    """
    from app.log.logger import get_config_logger

    logger = get_config_logger()
    # 延迟导入以避免循环依赖和确保数据库连接已初始化
    from app.database.connection import database
    from app.database.models import Settings as SettingsModel

    global settings
    logger.info("Starting initial settings synchronization...")

    if not database.is_connected:
        try:
            await database.connect()
            logger.info("Database connection established for initial sync.")
        except Exception as e:
            logger.error(
                f"Failed to connect to database for initial settings sync: {e}. Skipping sync."
            )
            return

    try:
        # 1. 从数据库加载设置
        db_settings_raw: List[Dict[str, Any]] = []
        try:
            query = select(SettingsModel.key, SettingsModel.value)
            results = await database.fetch_all(query)
            db_settings_raw = [
                {"key": row["key"], "value": row["value"]} for row in results
            ]
            logger.info(f"Fetched {len(db_settings_raw)} settings from database.")
        except Exception as e:
            logger.error(
                f"Failed to fetch settings from database: {e}. Proceeding with environment/dotenv settings."
            )
            # 即使数据库读取失败,也要继续执行,确保基于 env/dotenv 的配置能同步到数据库

        db_settings_map: Dict[str, str] = {
            s["key"]: s["value"] for s in db_settings_raw
        }

        # 2. 将数据库设置合并到内存 settings (数据库优先)
        updated_in_memory = False

        for key, db_value in db_settings_map.items():
            if key == "DATABASE_TYPE":
                logger.debug(
                    f"Skipping update of '{key}' in memory from database. "
                    "This setting is controlled by environment/dotenv."
                )
                continue
            if hasattr(settings, key):
                target_type = Settings.__annotations__.get(key)
                if target_type:
                    try:
                        parsed_db_value = _parse_db_value(key, db_value, target_type)
                        memory_value = getattr(settings, key)

                        # 比较解析后的值和内存中的值
                        # 注意:对于列表等复杂类型,直接比较可能不够健壮,但这里简化处理
                        if parsed_db_value != memory_value:
                            # 检查类型是否匹配,以防解析函数返回了不兼容的类型
                            type_match = False
                            if target_type == List[str] and isinstance(
                                parsed_db_value, list
                            ):
                                type_match = True
                            elif target_type == Dict[str, float] and isinstance(
                                parsed_db_value, dict
                            ):
                                type_match = True
                            elif target_type not in (
                                List[str],
                                Dict[str, float],
                            ) and isinstance(parsed_db_value, target_type):
                                type_match = True

                            if type_match:
                                setattr(settings, key, parsed_db_value)
                                logger.debug(
                                    f"Updated setting '{key}' in memory from database value ({target_type})."
                                )
                                updated_in_memory = True
                            else:
                                logger.warning(
                                    f"Parsed DB value type mismatch for key '{key}'. Expected {target_type}, got {type(parsed_db_value)}. Skipping update."
                                )

                    except Exception as e:
                        logger.error(
                            f"Error processing database setting for key '{key}': {e}"
                        )
            else:
                logger.warning(
                    f"Database setting '{key}' not found in Settings model definition. Ignoring."
                )

        # 如果内存中有更新,重新验证 Pydantic 模型(可选但推荐)
        if updated_in_memory:
            try:
                # 重新加载以确保类型转换和验证
                settings = Settings(**settings.model_dump())
                logger.info(
                    "Settings object re-validated after merging database values."
                )
            except ValidationError as e:
                logger.error(
                    f"Validation error after merging database settings: {e}. Settings might be inconsistent."
                )

        # 3. 将最终的内存 settings 同步回数据库
        final_memory_settings = settings.model_dump()
        settings_to_update: List[Dict[str, Any]] = []
        settings_to_insert: List[Dict[str, Any]] = []
        now = datetime.datetime.now(datetime.timezone.utc)

        existing_db_keys = set(db_settings_map.keys())

        for key, value in final_memory_settings.items():
            if key == "DATABASE_TYPE":
                logger.debug(
                    f"Skipping synchronization of '{key}' to database. "
                    "This setting is controlled by environment/dotenv."
                )
                continue

            # 序列化值为字符串或 JSON 字符串
            if isinstance(value, (list, dict)):
                db_value = json.dumps(
                    value, ensure_ascii=False
                )
            elif isinstance(value, bool):
                db_value = str(value).lower()
            elif value is None:
                db_value = ""
            else:
                db_value = str(value)

            data = {
                "key": key,
                "value": db_value,
                "description": f"{key} configuration setting",
                "updated_at": now,
            }

            if key in existing_db_keys:
                # 仅当值与数据库中的不同时才更新
                if db_settings_map[key] != db_value:
                    settings_to_update.append(data)
            else:
                # 如果键不在数据库中,则插入
                data["created_at"] = now
                settings_to_insert.append(data)

        # 在事务中执行批量插入和更新
        if settings_to_insert or settings_to_update:
            try:
                async with database.transaction():
                    if settings_to_insert:
                        # 获取现有描述以避免覆盖
                        query_existing = select(
                            SettingsModel.key, SettingsModel.description
                        ).where(
                            SettingsModel.key.in_(
                                [s["key"] for s in settings_to_insert]
                            )
                        )
                        existing_desc = {
                            row["key"]: row["description"]
                            for row in await database.fetch_all(query_existing)
                        }
                        for item in settings_to_insert:
                            item["description"] = existing_desc.get(
                                item["key"], item["description"]
                            )

                        query_insert = insert(SettingsModel).values(settings_to_insert)
                        await database.execute(query=query_insert)
                        logger.info(
                            f"Synced (inserted) {len(settings_to_insert)} settings to database."
                        )

                    if settings_to_update:
                        # 获取现有描述以避免覆盖
                        query_existing = select(
                            SettingsModel.key, SettingsModel.description
                        ).where(
                            SettingsModel.key.in_(
                                [s["key"] for s in settings_to_update]
                            )
                        )
                        existing_desc = {
                            row["key"]: row["description"]
                            for row in await database.fetch_all(query_existing)
                        }

                        for setting_data in settings_to_update:
                            setting_data["description"] = existing_desc.get(
                                setting_data["key"], setting_data["description"]
                            )
                            query_update = (
                                update(SettingsModel)
                                .where(SettingsModel.key == setting_data["key"])
                                .values(
                                    value=setting_data["value"],
                                    description=setting_data["description"],
                                    updated_at=setting_data["updated_at"],
                                )
                            )
                            await database.execute(query=query_update)
                        logger.info(
                            f"Synced (updated) {len(settings_to_update)} settings to database."
                        )
            except Exception as e:
                logger.error(
                    f"Failed to sync settings to database during startup: {str(e)}"
                )
        else:
            logger.info(
                "No setting changes detected between memory and database during initial sync."
            )

        # 刷新日志等级
        Logger.update_log_levels(final_memory_settings.get("LOG_LEVEL"))

    except Exception as e:
        logger.error(f"An unexpected error occurred during initial settings sync: {e}")
    finally:
        if database.is_connected:
            try:
                pass
            except Exception as e:
                logger.error(f"Error disconnecting database after initial sync: {e}")

    logger.info("Initial settings synchronization finished.")