File size: 2,893 Bytes
76b9762
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import datetime
import time
import re
from typing import List, Union

import openai
from openai import APIStatusError
from openai.types import CreateEmbeddingResponse

from app.config.config import settings
from app.log.logger import get_embeddings_logger
from app.database.services import add_error_log, add_request_log

logger = get_embeddings_logger()


class EmbeddingService:

    async def create_embedding(
        self, input_text: Union[str, List[str]], model: str, api_key: str
    ) -> CreateEmbeddingResponse:
        """Create embeddings using OpenAI API with database logging"""
        start_time = time.perf_counter()
        request_datetime = datetime.datetime.now()
        is_success = False
        status_code = None
        response = None
        error_log_msg = ""
        if isinstance(input_text, list):
            request_msg_log = {"input_truncated": [str(item)[:100] + "..." if len(str(item)) > 100 else str(item) for item in input_text[:5]]}
            if len(input_text) > 5:
                 request_msg_log["input_truncated"].append("...")
        else:
            request_msg_log = {"input_truncated": input_text[:1000] + "..." if len(input_text) > 1000 else input_text}


        try:
            client = openai.OpenAI(api_key=api_key, base_url=settings.BASE_URL)
            response = client.embeddings.create(input=input_text, model=model)
            is_success = True
            status_code = 200
            return response
        except APIStatusError as e:
            is_success = False
            status_code = e.status_code
            error_log_msg = f"OpenAI API error: {e}"
            logger.error(f"Error creating embedding (APIStatusError): {error_log_msg}")
            raise e
        except Exception as e:
            is_success = False
            error_log_msg = f"Generic error: {e}"
            logger.error(f"Error creating embedding (Exception): {error_log_msg}")
            match = re.search(r"status code (\d+)", str(e))
            if match:
                status_code = int(match.group(1))
            else:
                status_code = 500
            raise e
        finally:
            end_time = time.perf_counter()
            latency_ms = int((end_time - start_time) * 1000)
            if not is_success:
                await add_error_log(
                    gemini_key=api_key,
                    model_name=model,
                    error_type="openai-embedding",
                    error_log=error_log_msg,
                    error_code=status_code,
                    request_msg=request_msg_log
                 )
            await add_request_log(
                model_name=model,
                api_key=api_key,
                is_success=is_success,
                status_code=status_code,
                latency_ms=latency_ms,
                request_time=request_datetime
            )