GeminiBalance / app /handler /stream_optimizer.py
CatPtain's picture
Upload 77 files
76b9762 verified
import asyncio
import math
from typing import Any, AsyncGenerator, Callable, List
from app.config.config import settings
from app.core.constants import (
DEFAULT_STREAM_CHUNK_SIZE,
DEFAULT_STREAM_LONG_TEXT_THRESHOLD,
DEFAULT_STREAM_MAX_DELAY,
DEFAULT_STREAM_MIN_DELAY,
DEFAULT_STREAM_SHORT_TEXT_THRESHOLD,
)
from app.log.logger import get_gemini_logger, get_openai_logger
logger_openai = get_openai_logger()
logger_gemini = get_gemini_logger()
class StreamOptimizer:
"""流式输出优化器
提供流式输出优化功能,包括智能延迟调整和长文本分块输出。
"""
def __init__(
self,
logger=None,
min_delay: float = DEFAULT_STREAM_MIN_DELAY,
max_delay: float = DEFAULT_STREAM_MAX_DELAY,
short_text_threshold: int = DEFAULT_STREAM_SHORT_TEXT_THRESHOLD,
long_text_threshold: int = DEFAULT_STREAM_LONG_TEXT_THRESHOLD,
chunk_size: int = DEFAULT_STREAM_CHUNK_SIZE,
):
"""初始化流式输出优化器
参数:
logger: 日志记录器
min_delay: 最小延迟时间(秒)
max_delay: 最大延迟时间(秒)
short_text_threshold: 短文本阈值(字符数)
long_text_threshold: 长文本阈值(字符数)
chunk_size: 长文本分块大小(字符数)
"""
self.logger = logger
self.min_delay = min_delay
self.max_delay = max_delay
self.short_text_threshold = short_text_threshold
self.long_text_threshold = long_text_threshold
self.chunk_size = chunk_size
def calculate_delay(self, text_length: int) -> float:
"""根据文本长度计算延迟时间
参数:
text_length: 文本长度
返回:
延迟时间(秒)
"""
if text_length <= self.short_text_threshold:
# 短文本使用较大延迟
return self.max_delay
elif text_length >= self.long_text_threshold:
# 长文本使用较小延迟
return self.min_delay
else:
# 中等长度文本使用线性插值计算延迟
# 使用对数函数使延迟变化更平滑
ratio = math.log(text_length / self.short_text_threshold) / math.log(
self.long_text_threshold / self.short_text_threshold
)
return self.max_delay - ratio * (self.max_delay - self.min_delay)
def split_text_into_chunks(self, text: str) -> List[str]:
"""将文本分割成小块
参数:
text: 要分割的文本
返回:
文本块列表
"""
return [
text[i : i + self.chunk_size] for i in range(0, len(text), self.chunk_size)
]
async def optimize_stream_output(
self,
text: str,
create_response_chunk: Callable[[str], Any],
format_chunk: Callable[[Any], str],
) -> AsyncGenerator[str, None]:
"""优化流式输出
参数:
text: 要输出的文本
create_response_chunk: 创建响应块的函数,接收文本,返回响应块
format_chunk: 格式化响应块的函数,接收响应块,返回格式化后的字符串
返回:
异步生成器,生成格式化后的响应块
"""
if not text:
return
# 计算智能延迟时间
delay = self.calculate_delay(len(text))
# 根据文本长度决定输出方式
if len(text) >= self.long_text_threshold:
# 长文本:分块输出
chunks = self.split_text_into_chunks(text)
for chunk_text in chunks:
chunk_response = create_response_chunk(chunk_text)
yield format_chunk(chunk_response)
await asyncio.sleep(delay)
else:
# 短文本:逐字符输出
for char in text:
char_chunk = create_response_chunk(char)
yield format_chunk(char_chunk)
await asyncio.sleep(delay)
# 创建默认的优化器实例,可以直接导入使用
openai_optimizer = StreamOptimizer(
logger=logger_openai,
min_delay=settings.STREAM_MIN_DELAY,
max_delay=settings.STREAM_MAX_DELAY,
short_text_threshold=settings.STREAM_SHORT_TEXT_THRESHOLD,
long_text_threshold=settings.STREAM_LONG_TEXT_THRESHOLD,
chunk_size=settings.STREAM_CHUNK_SIZE,
)
gemini_optimizer = StreamOptimizer(
logger=logger_gemini,
min_delay=settings.STREAM_MIN_DELAY,
max_delay=settings.STREAM_MAX_DELAY,
short_text_threshold=settings.STREAM_SHORT_TEXT_THRESHOLD,
long_text_threshold=settings.STREAM_LONG_TEXT_THRESHOLD,
chunk_size=settings.STREAM_CHUNK_SIZE,
)