import base64 import json import random import string import time import uuid from abc import ABC, abstractmethod from typing import Any, Dict, List, Optional from app.config.config import settings from app.utils.uploader import ImageUploaderFactory class ResponseHandler(ABC): """响应处理器基类""" @abstractmethod def handle_response( self, response: Dict[str, Any], model: str, stream: bool = False ) -> Dict[str, Any]: pass class GeminiResponseHandler(ResponseHandler): """Gemini响应处理器""" def __init__(self): self.thinking_first = True self.thinking_status = False def handle_response( self, response: Dict[str, Any], model: str, stream: bool = False, usage_metadata: Optional[Dict[str, Any]] = None ) -> Dict[str, Any]: if stream: return _handle_gemini_stream_response(response, model, stream) return _handle_gemini_normal_response(response, model, stream) def _handle_openai_stream_response( response: Dict[str, Any], model: str, finish_reason: str, usage_metadata: Optional[Dict[str, Any]] ) -> Dict[str, Any]: text, tool_calls, _ = _extract_result( response, model, stream=True, gemini_format=False ) if not text and not tool_calls: delta = {} else: delta = {"content": text, "role": "assistant"} if tool_calls: delta["tool_calls"] = tool_calls template_chunk = { "id": f"chatcmpl-{uuid.uuid4()}", "object": "chat.completion.chunk", "created": int(time.time()), "model": model, "choices": [{"index": 0, "delta": delta, "finish_reason": finish_reason}], } if usage_metadata: template_chunk["usage"] = {"prompt_tokens": usage_metadata.get("promptTokenCount", 0), "completion_tokens": usage_metadata.get("candidatesTokenCount",0), "total_tokens": usage_metadata.get("totalTokenCount", 0)} return template_chunk def _handle_openai_normal_response( response: Dict[str, Any], model: str, finish_reason: str, usage_metadata: Optional[Dict[str, Any]] ) -> Dict[str, Any]: text, tool_calls, _ = _extract_result( response, model, stream=False, gemini_format=False ) return { "id": f"chatcmpl-{uuid.uuid4()}", "object": "chat.completion", "created": int(time.time()), "model": model, "choices": [ { "index": 0, "message": { "role": "assistant", "content": text, "tool_calls": tool_calls, }, "finish_reason": finish_reason, } ], "usage": {"prompt_tokens": usage_metadata.get("promptTokenCount", 0), "completion_tokens": usage_metadata.get("candidatesTokenCount",0), "total_tokens": usage_metadata.get("totalTokenCount", 0)}, } class OpenAIResponseHandler(ResponseHandler): """OpenAI响应处理器""" def __init__(self, config): self.config = config self.thinking_first = True self.thinking_status = False def handle_response( self, response: Dict[str, Any], model: str, stream: bool = False, finish_reason: str = None, usage_metadata: Optional[Dict[str, Any]] = None, ) -> Optional[Dict[str, Any]]: if stream: return _handle_openai_stream_response(response, model, finish_reason, usage_metadata) return _handle_openai_normal_response(response, model, finish_reason, usage_metadata) def handle_image_chat_response( self, image_str: str, model: str, stream=False, finish_reason="stop" ): if stream: return _handle_openai_stream_image_response(image_str, model, finish_reason) return _handle_openai_normal_image_response(image_str, model, finish_reason) def _handle_openai_stream_image_response( image_str: str, model: str, finish_reason: str ) -> Dict[str, Any]: return { "id": f"chatcmpl-{uuid.uuid4()}", "object": "chat.completion.chunk", "created": int(time.time()), "model": model, "choices": [ { "index": 0, "delta": {"content": image_str} if image_str else {}, "finish_reason": finish_reason, } ], } def _handle_openai_normal_image_response( image_str: str, model: str, finish_reason: str ) -> Dict[str, Any]: return { "id": f"chatcmpl-{uuid.uuid4()}", "object": "chat.completion", "created": int(time.time()), "model": model, "choices": [ { "index": 0, "message": {"role": "assistant", "content": image_str}, "finish_reason": finish_reason, } ], "usage": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, } def _extract_result( response: Dict[str, Any], model: str, stream: bool = False, gemini_format: bool = False, ) -> tuple[str, List[Dict[str, Any]], Optional[bool]]: text, tool_calls = "", [] thought = None if stream: if response.get("candidates"): candidate = response["candidates"][0] content = candidate.get("content", {}) parts = content.get("parts", []) if not parts: return "", [], None if "text" in parts[0]: text = parts[0].get("text") if "thought" in parts[0]: thought = parts[0].get("thought") elif "executableCode" in parts[0]: text = _format_code_block(parts[0]["executableCode"]) elif "codeExecution" in parts[0]: text = _format_code_block(parts[0]["codeExecution"]) elif "executableCodeResult" in parts[0]: text = _format_execution_result(parts[0]["executableCodeResult"]) elif "codeExecutionResult" in parts[0]: text = _format_execution_result(parts[0]["codeExecutionResult"]) elif "inlineData" in parts[0]: text = _extract_image_data(parts[0]) else: text = "" text = _add_search_link_text(model, candidate, text) tool_calls = _extract_tool_calls(parts, gemini_format) else: if response.get("candidates"): candidate = response["candidates"][0] if "thinking" in model: if settings.SHOW_THINKING_PROCESS: if len(candidate["content"]["parts"]) == 2: text = ( "> thinking\n\n" + candidate["content"]["parts"][0]["text"] + "\n\n---\n> output\n\n" + candidate["content"]["parts"][1]["text"] ) else: text = candidate["content"]["parts"][0]["text"] else: if len(candidate["content"]["parts"]) == 2: text = candidate["content"]["parts"][1]["text"] else: text = candidate["content"]["parts"][0]["text"] else: text = "" if "parts" in candidate["content"]: for part in candidate["content"]["parts"]: if "text" in part: text += part["text"] if "thought" in part and thought is None: thought = part.get("thought") elif "inlineData" in part: text += _extract_image_data(part) text = _add_search_link_text(model, candidate, text) tool_calls = _extract_tool_calls( candidate["content"]["parts"], gemini_format ) else: text = "暂无返回" return text, tool_calls, thought def _extract_image_data(part: dict) -> str: image_uploader = None if settings.UPLOAD_PROVIDER == "smms": image_uploader = ImageUploaderFactory.create( provider=settings.UPLOAD_PROVIDER, api_key=settings.SMMS_SECRET_TOKEN ) elif settings.UPLOAD_PROVIDER == "picgo": image_uploader = ImageUploaderFactory.create( provider=settings.UPLOAD_PROVIDER, api_key=settings.PICGO_API_KEY ) elif settings.UPLOAD_PROVIDER == "cloudflare_imgbed": image_uploader = ImageUploaderFactory.create( provider=settings.UPLOAD_PROVIDER, base_url=settings.CLOUDFLARE_IMGBED_URL, auth_code=settings.CLOUDFLARE_IMGBED_AUTH_CODE, ) current_date = time.strftime("%Y/%m/%d") filename = f"{current_date}/{uuid.uuid4().hex[:8]}.png" base64_data = part["inlineData"]["data"] # 将base64_data转成bytes数组 bytes_data = base64.b64decode(base64_data) upload_response = image_uploader.upload(bytes_data, filename) if upload_response.success: text = f"\n\n![image]({upload_response.data.url})\n\n" else: text = "" return text def _extract_tool_calls( parts: List[Dict[str, Any]], gemini_format: bool ) -> List[Dict[str, Any]]: """提取工具调用信息""" if not parts or not isinstance(parts, list): return [] letters = string.ascii_lowercase + string.digits tool_calls = list() for i in range(len(parts)): part = parts[i] if not part or not isinstance(part, dict): continue item = part.get("functionCall", {}) if not item or not isinstance(item, dict): continue if gemini_format: tool_calls.append(part) else: id = f"call_{''.join(random.sample(letters, 32))}" name = item.get("name", "") arguments = json.dumps(item.get("args", None) or {}) tool_calls.append( { "index": i, "id": id, "type": "function", "function": {"name": name, "arguments": arguments}, } ) return tool_calls def _handle_gemini_stream_response( response: Dict[str, Any], model: str, stream: bool ) -> Dict[str, Any]: text, tool_calls, thought = _extract_result( response, model, stream=stream, gemini_format=True ) if tool_calls: content = {"parts": tool_calls, "role": "model"} else: part = {"text": text} if thought is not None: part["thought"] = thought content = {"parts": [part], "role": "model"} response["candidates"][0]["content"] = content return response def _handle_gemini_normal_response( response: Dict[str, Any], model: str, stream: bool ) -> Dict[str, Any]: text, tool_calls, thought = _extract_result( response, model, stream=stream, gemini_format=True ) if tool_calls: content = {"parts": tool_calls, "role": "model"} else: part = {"text": text} if thought is not None: part["thought"] = thought content = {"parts": [part], "role": "model"} response["candidates"][0]["content"] = content return response def _format_code_block(code_data: dict) -> str: """格式化代码块输出""" language = code_data.get("language", "").lower() code = code_data.get("code", "").strip() return f"""\n\n---\n\n【代码执行】\n```{language}\n{code}\n```\n""" def _add_search_link_text(model: str, candidate: dict, text: str) -> str: if ( settings.SHOW_SEARCH_LINK and model.endswith("-search") and "groundingMetadata" in candidate and "groundingChunks" in candidate["groundingMetadata"] ): grounding_chunks = candidate["groundingMetadata"]["groundingChunks"] text += "\n\n---\n\n" text += "**【引用来源】**\n\n" for _, grounding_chunk in enumerate(grounding_chunks, 1): if "web" in grounding_chunk: text += _create_search_link(grounding_chunk["web"]) return text else: return text def _create_search_link(grounding_chunk: dict) -> str: return f'\n- [{grounding_chunk["title"]}]({grounding_chunk["uri"]})' def _format_execution_result(result_data: dict) -> str: """格式化执行结果输出""" outcome = result_data.get("outcome", "") output = result_data.get("output", "").strip() return f"""\n【执行结果】\n> outcome: {outcome}\n\n【输出结果】\n```plaintext\n{output}\n```\n\n---\n\n"""