from fastapi import Request from starlette.middleware.base import BaseHTTPMiddleware from app.config.config import settings from app.log.logger import get_main_logger import re logger = get_main_logger() class SmartRoutingMiddleware(BaseHTTPMiddleware): def __init__(self, app): super().__init__(app) # 简化的路由规则 - 直接根据检测结果路由 pass async def dispatch(self, request: Request, call_next): if not settings.URL_NORMALIZATION_ENABLED: return await call_next(request) logger.debug(f"request: {request}") original_path = str(request.url.path) method = request.method # 尝试修复URL fixed_path, fix_info = self.fix_request_url(original_path, method, request) if fixed_path != original_path: logger.info(f"URL fixed: {method} {original_path} → {fixed_path}") if fix_info: logger.debug(f"Fix details: {fix_info}") # 重写请求路径 request.scope["path"] = fixed_path request.scope["raw_path"] = fixed_path.encode() return await call_next(request) def fix_request_url(self, path: str, method: str, request: Request) -> tuple: """简化的URL修复逻辑""" # 首先检查是否已经是正确的格式,如果是则不处理 if self.is_already_correct_format(path): return path, None # 1. 最高优先级:包含generateContent → Gemini格式 if "generatecontent" in path.lower() or "v1beta/models" in path.lower(): return self.fix_gemini_by_operation(path, method, request) # 2. 第二优先级:包含/openai/ → OpenAI格式 if "/openai/" in path.lower(): return self.fix_openai_by_operation(path, method) # 3. 第三优先级:包含/v1/ → v1格式 if "/v1/" in path.lower(): return self.fix_v1_by_operation(path, method) # 4. 第四优先级:包含/chat/completions → chat功能 if "/chat/completions" in path.lower(): return "/v1/chat/completions", {"type": "v1_chat"} # 5. 默认:原样传递 return path, None def is_already_correct_format(self, path: str) -> bool: """检查是否已经是正确的API格式""" # 检查是否已经是正确的端点格式 correct_patterns = [ r"^/v1beta/models/[^/:]+:(generate|streamGenerate)Content$", # Gemini原生 r"^/gemini/v1beta/models/[^/:]+:(generate|streamGenerate)Content$", # Gemini带前缀 r"^/v1beta/models$", # Gemini模型列表 r"^/gemini/v1beta/models$", # Gemini带前缀的模型列表 r"^/v1/(chat/completions|models|embeddings|images/generations|audio/speech)$", # v1格式 r"^/openai/v1/(chat/completions|models|embeddings|images/generations|audio/speech)$", # OpenAI格式 r"^/hf/v1/(chat/completions|models|embeddings|images/generations|audio/speech)$", # HF格式 r"^/vertex-express/v1beta/models/[^/:]+:(generate|streamGenerate)Content$", # Vertex Express Gemini格式 r"^/vertex-express/v1beta/models$", # Vertex Express模型列表 r"^/vertex-express/v1/(chat/completions|models|embeddings|images/generations)$", # Vertex Express OpenAI格式 ] for pattern in correct_patterns: if re.match(pattern, path): return True return False def fix_gemini_by_operation( self, path: str, method: str, request: Request ) -> tuple: """根据Gemini操作修复,考虑端点偏好""" if method == "GET": return "/v1beta/models", { "role": "gemini_models", } # 提取模型名称 try: model_name = self.extract_model_name(path, request) except ValueError: # 无法提取模型名称,返回原路径不做处理 return path, None # 检测是否为流式请求 is_stream = self.detect_stream_request(path, request) # 检查是否有vertex-express偏好 if "/vertex-express/" in path.lower(): if is_stream: target_url = ( f"/vertex-express/v1beta/models/{model_name}:streamGenerateContent" ) else: target_url = ( f"/vertex-express/v1beta/models/{model_name}:generateContent" ) fix_info = { "rule": ( "vertex_express_generate" if not is_stream else "vertex_express_stream" ), "preference": "vertex_express_format", "is_stream": is_stream, "model": model_name, } else: # 标准Gemini端点 if is_stream: target_url = f"/v1beta/models/{model_name}:streamGenerateContent" else: target_url = f"/v1beta/models/{model_name}:generateContent" fix_info = { "rule": "gemini_generate" if not is_stream else "gemini_stream", "preference": "gemini_format", "is_stream": is_stream, "model": model_name, } return target_url, fix_info def fix_openai_by_operation(self, path: str, method: str) -> tuple: """根据操作类型修复OpenAI格式""" if method == "POST": if "chat" in path.lower() or "completion" in path.lower(): return "/openai/v1/chat/completions", {"type": "openai_chat"} elif "embedding" in path.lower(): return "/openai/v1/embeddings", {"type": "openai_embeddings"} elif "image" in path.lower(): return "/openai/v1/images/generations", {"type": "openai_images"} elif "audio" in path.lower(): return "/openai/v1/audio/speech", {"type": "openai_audio"} elif method == "GET": if "model" in path.lower(): return "/openai/v1/models", {"type": "openai_models"} return path, None def fix_v1_by_operation(self, path: str, method: str) -> tuple: """根据操作类型修复v1格式""" if method == "POST": if "chat" in path.lower() or "completion" in path.lower(): return "/v1/chat/completions", {"type": "v1_chat"} elif "embedding" in path.lower(): return "/v1/embeddings", {"type": "v1_embeddings"} elif "image" in path.lower(): return "/v1/images/generations", {"type": "v1_images"} elif "audio" in path.lower(): return "/v1/audio/speech", {"type": "v1_audio"} elif method == "GET": if "model" in path.lower(): return "/v1/models", {"type": "v1_models"} return path, None def detect_stream_request(self, path: str, request: Request) -> bool: """检测是否为流式请求""" # 1. 路径中包含stream关键词 if "stream" in path.lower(): return True # 2. 查询参数 if request.query_params.get("stream") == "true": return True return False def extract_model_name(self, path: str, request: Request) -> str: """从请求中提取模型名称,用于构建Gemini API URL""" # 1. 从请求体中提取 try: if hasattr(request, "_body") and request._body: import json body = json.loads(request._body.decode()) if "model" in body and body["model"]: return body["model"] except Exception: pass # 2. 从查询参数中提取 model_param = request.query_params.get("model") if model_param: return model_param # 3. 从路径中提取(用于已包含模型名称的路径) match = re.search(r"/models/([^/:]+)", path, re.IGNORECASE) if match: return match.group(1) # 4. 如果无法提取模型名称,抛出异常 raise ValueError("Unable to extract model name from request")