Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,36 +1,34 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
import cv2
|
6 |
-
from transformers import CLIPProcessor, CLIPModel
|
7 |
-
# Hypot MedGemma imports (ensure you have access and HF token)
|
8 |
-
from medgem import MedGemmaProcessor, MedGemmaForImageClassification
|
9 |
|
10 |
# Device setup
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
|
13 |
-
# Load CLIP
|
14 |
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16").to(device)
|
15 |
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
|
16 |
|
17 |
-
# Load MedGemma
|
18 |
-
|
19 |
-
|
|
|
20 |
|
21 |
-
# Stanford Dogs breeds
|
22 |
-
STANFORD_BREEDS = [
|
23 |
-
"afghan hound", "african hunting dog", "airedale", "american staffordshire terrier",
|
24 |
-
# ... (full list from earlier)
|
25 |
-
"wire-haired fox terrier", "yorkshire terrier"
|
26 |
-
]
|
27 |
BREED_LIFESPAN = {
|
28 |
-
"afghan hound": 11.1,
|
29 |
-
|
30 |
-
"
|
|
|
|
|
31 |
}
|
32 |
|
33 |
-
# Healthspan questionnaire definitions
|
34 |
QUESTIONNAIRE = [
|
35 |
{"domain": "Mobility", "questions": [
|
36 |
"Does your dog have difficulty rising from lying down?",
|
@@ -54,17 +52,18 @@ QUESTIONNAIRE = [
|
|
54 |
]}
|
55 |
]
|
56 |
|
57 |
-
# Unified scoring map for questionnaire (0–5 scale)
|
58 |
SCALE = ["0", "1", "2", "3", "4", "5"]
|
59 |
|
|
|
60 |
def predict_biological_age(image: Image.Image, breed: str) -> int:
|
61 |
avg = BREED_LIFESPAN.get(breed.lower(), 12)
|
62 |
-
prompts = [f"a
|
63 |
inputs = clip_processor(text=prompts, images=image, return_tensors="pt", padding=True).to(device)
|
64 |
with torch.no_grad():
|
65 |
logits = clip_model(**inputs).logits_per_image.softmax(dim=1)[0].cpu().numpy()
|
66 |
return int(np.argmax(logits) + 1)
|
67 |
|
|
|
68 |
def analyze_medical_image(image: Image.Image):
|
69 |
inputs = medgemma_processor(images=image, return_tensors="pt").to(device)
|
70 |
with torch.no_grad():
|
@@ -74,13 +73,11 @@ def analyze_medical_image(image: Image.Image):
|
|
74 |
conf = float(np.max(probs))
|
75 |
return label, conf
|
76 |
|
|
|
77 |
def classify_breed_and_health(image: Image.Image, user_breed=None):
|
78 |
-
# Image features
|
79 |
inputs = clip_processor(images=image, return_tensors="pt").to(device)
|
80 |
with torch.no_grad():
|
81 |
img_feats = clip_model.get_image_features(**inputs)
|
82 |
-
|
83 |
-
# Breed classification
|
84 |
texts = [f"a photo of a {b}" for b in STANFORD_BREEDS]
|
85 |
t_in = clip_processor(text=texts, return_tensors="pt", padding=True).to(device)
|
86 |
with torch.no_grad():
|
@@ -90,11 +87,10 @@ def classify_breed_and_health(image: Image.Image, user_breed=None):
|
|
90 |
breed = user_breed or STANFORD_BREEDS[idx]
|
91 |
breed_conf = float(sims[idx])
|
92 |
|
93 |
-
# Basic health aspects via CLIP
|
94 |
aspects = {
|
95 |
"Coat": ("shiny healthy coat", "dull patchy fur"),
|
96 |
"Eyes": ("bright clear eyes", "cloudy milky eyes"),
|
97 |
-
"Body": ("ideal muscle tone", "visible ribs or
|
98 |
"Teeth": ("clean white teeth", "yellow stained teeth")
|
99 |
}
|
100 |
health = {}
|
@@ -107,87 +103,81 @@ def classify_breed_and_health(image: Image.Image, user_breed=None):
|
|
107 |
health[name] = {"assessment": choice, "confidence": float(max(sim))}
|
108 |
return breed, breed_conf, health
|
109 |
|
|
|
110 |
def analyze_video_health(video_path: str):
|
111 |
cap = cv2.VideoCapture(video_path)
|
112 |
fps = cap.get(cv2.CAP_PROP_FPS) or 24
|
113 |
-
|
114 |
-
duration =
|
115 |
-
|
116 |
-
|
117 |
-
gait_scores = []
|
118 |
for i in indices:
|
119 |
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
120 |
ret, frame = cap.read()
|
121 |
-
if not ret:
|
|
|
122 |
img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
123 |
_, conf = analyze_medical_image(img)
|
124 |
-
|
125 |
cap.release()
|
126 |
-
|
127 |
-
|
128 |
|
129 |
def compute_questionnaire_score(answers: list):
|
130 |
-
# answers in order of QUESTIONNAIRE domains × questions
|
131 |
scores = {}
|
132 |
idx = 0
|
133 |
-
for
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
137 |
return scores
|
138 |
|
139 |
-
|
140 |
with gr.Blocks(title="🐶 Dog Health & Age Analyzer") as demo:
|
141 |
-
gr.Markdown("## Upload
|
142 |
|
143 |
with gr.Tab("Image Analysis"):
|
144 |
img_in = gr.Image(type="pil", label="Upload Dog Image")
|
145 |
breed_in = gr.Textbox(label="(Optional) Override Breed")
|
146 |
age_in = gr.Number(label="Chronological Age (years)", precision=1)
|
147 |
-
|
148 |
-
|
149 |
|
150 |
-
def run_image(img,
|
151 |
-
breed, b_conf, health = classify_breed_and_health(img,
|
152 |
med_label, med_conf = analyze_medical_image(img)
|
153 |
bio_age = predict_biological_age(img, breed)
|
154 |
-
pace = round(bio_age /
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
report += f"**Chronological Age:** {chrono_age or 'N/A'} yrs \n"
|
160 |
if pace:
|
161 |
-
|
162 |
-
|
163 |
for k, v in health.items():
|
164 |
-
|
165 |
-
return
|
166 |
|
167 |
-
|
168 |
|
169 |
with gr.Tab("Video Analysis"):
|
170 |
-
|
171 |
-
|
172 |
vid_out = gr.JSON()
|
|
|
173 |
|
174 |
-
|
175 |
-
|
176 |
-
with gr.Tab("Healthspan Questionnaire"):
|
177 |
widgets = []
|
178 |
-
for
|
179 |
-
gr.Markdown(f"### {
|
180 |
-
for q in
|
181 |
w = gr.Radio(choices=SCALE, label=q)
|
182 |
widgets.append(w)
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
btn_q.click(
|
187 |
-
fn=compute_questionnaire_score,
|
188 |
-
inputs=widgets,
|
189 |
-
outputs=q_out
|
190 |
-
)
|
191 |
|
192 |
with gr.Tab("About"):
|
193 |
gr.Markdown("""
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
import gradio as gr
|
4 |
from PIL import Image
|
5 |
import torch
|
6 |
import numpy as np
|
7 |
import cv2
|
8 |
+
from transformers import CLIPProcessor, CLIPModel AutoProcessor, AutoModelForImageClassification
|
|
|
|
|
9 |
|
10 |
# Device setup
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
|
13 |
+
# Load CLIP for breed, age, basic health
|
14 |
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16").to(device)
|
15 |
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
|
16 |
|
17 |
+
# Load MedGemma via Hugging Face Transformers
|
18 |
+
# (no special pip package needed; uses AutoModel APIs)
|
19 |
+
medgemma_processor = AutoProcessor.from_pretrained("google/medgemma-v1")
|
20 |
+
medgemma_model = AutoModelForImageClassification.from_pretrained("google/medgemma-v1").to(device)
|
21 |
|
22 |
+
# Stanford Dogs breeds & lifespans (abbreviated here; include full lists)
|
23 |
+
STANFORD_BREEDS = ["afghan hound", "beagle", "golden retriever", "yorkshire terrier"] # etc.
|
|
|
|
|
|
|
|
|
24 |
BREED_LIFESPAN = {
|
25 |
+
"afghan hound": 11.1,
|
26 |
+
"beagle": 12.5,
|
27 |
+
"golden retriever": 13.2,
|
28 |
+
"yorkshire terrier": 13.3,
|
29 |
+
# etc.
|
30 |
}
|
31 |
|
|
|
32 |
QUESTIONNAIRE = [
|
33 |
{"domain": "Mobility", "questions": [
|
34 |
"Does your dog have difficulty rising from lying down?",
|
|
|
52 |
]}
|
53 |
]
|
54 |
|
|
|
55 |
SCALE = ["0", "1", "2", "3", "4", "5"]
|
56 |
|
57 |
+
|
58 |
def predict_biological_age(image: Image.Image, breed: str) -> int:
|
59 |
avg = BREED_LIFESPAN.get(breed.lower(), 12)
|
60 |
+
prompts = [f"a {age}-year-old {breed}" for age in range(1, int(avg * 2) + 1)]
|
61 |
inputs = clip_processor(text=prompts, images=image, return_tensors="pt", padding=True).to(device)
|
62 |
with torch.no_grad():
|
63 |
logits = clip_model(**inputs).logits_per_image.softmax(dim=1)[0].cpu().numpy()
|
64 |
return int(np.argmax(logits) + 1)
|
65 |
|
66 |
+
|
67 |
def analyze_medical_image(image: Image.Image):
|
68 |
inputs = medgemma_processor(images=image, return_tensors="pt").to(device)
|
69 |
with torch.no_grad():
|
|
|
73 |
conf = float(np.max(probs))
|
74 |
return label, conf
|
75 |
|
76 |
+
|
77 |
def classify_breed_and_health(image: Image.Image, user_breed=None):
|
|
|
78 |
inputs = clip_processor(images=image, return_tensors="pt").to(device)
|
79 |
with torch.no_grad():
|
80 |
img_feats = clip_model.get_image_features(**inputs)
|
|
|
|
|
81 |
texts = [f"a photo of a {b}" for b in STANFORD_BREEDS]
|
82 |
t_in = clip_processor(text=texts, return_tensors="pt", padding=True).to(device)
|
83 |
with torch.no_grad():
|
|
|
87 |
breed = user_breed or STANFORD_BREEDS[idx]
|
88 |
breed_conf = float(sims[idx])
|
89 |
|
|
|
90 |
aspects = {
|
91 |
"Coat": ("shiny healthy coat", "dull patchy fur"),
|
92 |
"Eyes": ("bright clear eyes", "cloudy milky eyes"),
|
93 |
+
"Body": ("ideal muscle tone", "visible ribs or bones"),
|
94 |
"Teeth": ("clean white teeth", "yellow stained teeth")
|
95 |
}
|
96 |
health = {}
|
|
|
103 |
health[name] = {"assessment": choice, "confidence": float(max(sim))}
|
104 |
return breed, breed_conf, health
|
105 |
|
106 |
+
|
107 |
def analyze_video_health(video_path: str):
|
108 |
cap = cv2.VideoCapture(video_path)
|
109 |
fps = cap.get(cv2.CAP_PROP_FPS) or 24
|
110 |
+
total = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
111 |
+
duration = total / fps
|
112 |
+
indices = np.linspace(0, total - 1, num=10, dtype=int)
|
113 |
+
scores = []
|
|
|
114 |
for i in indices:
|
115 |
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
116 |
ret, frame = cap.read()
|
117 |
+
if not ret:
|
118 |
+
break
|
119 |
img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
120 |
_, conf = analyze_medical_image(img)
|
121 |
+
scores.append(conf)
|
122 |
cap.release()
|
123 |
+
return {"duration_sec": round(duration, 1), "avg_gait_confidence": float(np.mean(scores))}
|
124 |
+
|
125 |
|
126 |
def compute_questionnaire_score(answers: list):
|
|
|
127 |
scores = {}
|
128 |
idx = 0
|
129 |
+
for sec in QUESTIONNAIRE:
|
130 |
+
n = len(sec["questions"])
|
131 |
+
vals = list(map(int, answers[idx: idx + n]))
|
132 |
+
idx += n
|
133 |
+
scores[sec["domain"]] = round(sum(vals) / n, 2)
|
134 |
return scores
|
135 |
|
136 |
+
|
137 |
with gr.Blocks(title="🐶 Dog Health & Age Analyzer") as demo:
|
138 |
+
gr.Markdown("## Upload Image or Video, or Record a Short Clip")
|
139 |
|
140 |
with gr.Tab("Image Analysis"):
|
141 |
img_in = gr.Image(type="pil", label="Upload Dog Image")
|
142 |
breed_in = gr.Textbox(label="(Optional) Override Breed")
|
143 |
age_in = gr.Number(label="Chronological Age (years)", precision=1)
|
144 |
+
btn = gr.Button("Analyze")
|
145 |
+
out = gr.Markdown()
|
146 |
|
147 |
+
def run_image(img, override, chrono):
|
148 |
+
breed, b_conf, health = classify_breed_and_health(img, override)
|
149 |
med_label, med_conf = analyze_medical_image(img)
|
150 |
bio_age = predict_biological_age(img, breed)
|
151 |
+
pace = round(bio_age / chrono, 2) if chrono else None
|
152 |
+
rpt = f"**Breed:** {breed} ({b_conf:.1%}) \n"
|
153 |
+
rpt += f"**MedGemma Finding:** {med_label} ({med_conf:.1%}) \n\n"
|
154 |
+
rpt += f"**Biological Age:** {bio_age} yrs \n"
|
155 |
+
rpt += f"**Chronological Age:** {chrono or 'N/A'} yrs \n"
|
|
|
156 |
if pace:
|
157 |
+
rpt += f"**Pace of Aging:** {pace}× \n\n"
|
158 |
+
rpt += "### Health Aspects\n"
|
159 |
for k, v in health.items():
|
160 |
+
rpt += f"- **{k}:** {v['assessment']} ({v['confidence']:.1%})\n"
|
161 |
+
return rpt
|
162 |
|
163 |
+
btn.click(run_image, inputs=[img_in, breed_in, age_in], outputs=out)
|
164 |
|
165 |
with gr.Tab("Video Analysis"):
|
166 |
+
vid_in = gr.Video(label="Upload or Record Video (10–30s)")
|
167 |
+
btn2 = gr.Button("Analyze Video")
|
168 |
vid_out = gr.JSON()
|
169 |
+
btn2.click(lambda v: analyze_video_health(v), inputs=vid_in, outputs=vid_out)
|
170 |
|
171 |
+
with gr.Tab("Questionnaire"):
|
|
|
|
|
172 |
widgets = []
|
173 |
+
for sec in QUESTIONNAIRE:
|
174 |
+
gr.Markdown(f"### {sec['domain']}")
|
175 |
+
for q in sec["questions"]:
|
176 |
w = gr.Radio(choices=SCALE, label=q)
|
177 |
widgets.append(w)
|
178 |
+
btn3 = gr.Button("Compute Score")
|
179 |
+
out_q = gr.JSON()
|
180 |
+
btn3.click(compute_questionnaire_score, inputs=widgets, outputs=out_q)
|
|
|
|
|
|
|
|
|
|
|
181 |
|
182 |
with gr.Tab("About"):
|
183 |
gr.Markdown("""
|