File size: 12,967 Bytes
22bc712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
import base64
import hashlib
import json
import logging
from io import BytesIO
from pathlib import Path
from typing import (
    Annotated,
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Optional,
    Tuple,
    Type,
    Union,
)

from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
from docling.backend.docling_parse_v2_backend import DoclingParseV2DocumentBackend
from docling.backend.pdf_backend import PdfDocumentBackend
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
from docling.datamodel.base_models import DocumentStream, InputFormat, OutputFormat
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import (
    EasyOcrOptions,
    OcrEngine,
    OcrOptions,
    PdfBackend,
    PdfPipelineOptions,
    RapidOcrOptions,
    TableFormerMode,
    TesseractOcrOptions,
)
from docling.document_converter import DocumentConverter, FormatOption, PdfFormatOption
from docling_core.types.doc import ImageRefMode
from fastapi import HTTPException
from pydantic import BaseModel, Field

from docling_serve.helper_functions import _to_list_of_strings

_log = logging.getLogger(__name__)


# Define the input options for the API
class ConvertDocumentsOptions(BaseModel):
    from_formats: Annotated[
        List[InputFormat],
        Field(
            description=(
                "Input format(s) to convert from. String or list of strings. "
                f"Allowed values: {', '.join([v.value for v in InputFormat])}. "
                "Optional, defaults to all formats."
            ),
            examples=[[v.value for v in InputFormat]],
        ),
    ] = [v for v in InputFormat]

    to_formats: Annotated[
        List[OutputFormat],
        Field(
            description=(
                "Output format(s) to convert to. String or list of strings. "
                f"Allowed values: {', '.join([v.value for v in OutputFormat])}. "
                "Optional, defaults to Markdown."
            ),
            examples=[[OutputFormat.MARKDOWN]],
        ),
    ] = [OutputFormat.MARKDOWN]

    image_export_mode: Annotated[
        ImageRefMode,
        Field(
            description=(
                "Image export mode for the document (in case of JSON,"
                " Markdown or HTML). "
                f"Allowed values: {', '.join([v.value for v in ImageRefMode])}. "
                "Optional, defaults to Embedded."
            ),
            examples=[ImageRefMode.EMBEDDED.value],
            # pattern="embedded|placeholder|referenced",
        ),
    ] = ImageRefMode.EMBEDDED

    do_ocr: Annotated[
        bool,
        Field(
            description=(
                "If enabled, the bitmap content will be processed using OCR. "
                "Boolean. Optional, defaults to true"
            ),
            # examples=[True],
        ),
    ] = True

    force_ocr: Annotated[
        bool,
        Field(
            description=(
                "If enabled, replace existing text with OCR-generated "
                "text over content. Boolean. Optional, defaults to false."
            ),
            # examples=[False],
        ),
    ] = False

    # TODO: use a restricted list based on what is installed on the system
    ocr_engine: Annotated[
        OcrEngine,
        Field(
            description=(
                "The OCR engine to use. String. "
                "Allowed values: easyocr, tesseract, rapidocr. "
                "Optional, defaults to easyocr."
            ),
            examples=[OcrEngine.EASYOCR],
        ),
    ] = OcrEngine.EASYOCR

    ocr_lang: Annotated[
        Optional[List[str]],
        Field(
            description=(
                "List of languages used by the OCR engine. "
                "Note that each OCR engine has "
                "different values for the language names. String or list of strings. "
                "Optional, defaults to empty."
            ),
            examples=[["fr", "de", "es", "en"]],
        ),
    ] = None

    pdf_backend: Annotated[
        PdfBackend,
        Field(
            description=(
                "The PDF backend to use. String. "
                f"Allowed values: {', '.join([v.value for v in PdfBackend])}. "
                f"Optional, defaults to {PdfBackend.DLPARSE_V2.value}."
            ),
            examples=[PdfBackend.DLPARSE_V2],
        ),
    ] = PdfBackend.DLPARSE_V2

    table_mode: Annotated[
        TableFormerMode,
        Field(
            TableFormerMode.FAST,
            description=(
                "Mode to use for table structure, String. "
                f"Allowed values: {', '.join([v.value for v in TableFormerMode])}. "
                "Optional, defaults to fast."
            ),
            examples=[TableFormerMode.FAST],
            # pattern="fast|accurate",
        ),
    ] = TableFormerMode.FAST

    abort_on_error: Annotated[
        bool,
        Field(
            description=(
                "Abort on error if enabled. " "Boolean. Optional, defaults to false."
            ),
            # examples=[False],
        ),
    ] = False

    return_as_file: Annotated[
        bool,
        Field(
            description=(
                "Return the output as a zip file "
                "(will happen anyway if multiple files are generated). "
                "Boolean. Optional, defaults to false."
            ),
            examples=[False],
        ),
    ] = False

    do_table_structure: Annotated[
        bool,
        Field(
            description=(
                "If enabled, the table structure will be extracted. "
                "Boolean. Optional, defaults to true."
            ),
            examples=[True],
        ),
    ] = True

    include_images: Annotated[
        bool,
        Field(
            description=(
                "If enabled, images will be extracted from the document. "
                "Boolean. Optional, defaults to true."
            ),
            examples=[True],
        ),
    ] = True

    images_scale: Annotated[
        float,
        Field(
            description="Scale factor for images. Float. Optional, defaults to 2.0.",
            examples=[2.0],
        ),
    ] = 2.0


class DocumentsConvertBase(BaseModel):
    options: ConvertDocumentsOptions = ConvertDocumentsOptions()


class HttpSource(BaseModel):
    url: Annotated[
        str,
        Field(
            description="HTTP url to process",
            examples=["https://arxiv.org/pdf/2206.01062"],
        ),
    ]
    headers: Annotated[
        Dict[str, Any],
        Field(
            description="Additional headers used to fetch the urls, "
            "e.g. authorization, agent, etc"
        ),
    ] = {}


class FileSource(BaseModel):
    base64_string: Annotated[
        str,
        Field(
            description="Content of the file serialized in base64. "
            "For example it can be obtained via "
            "`base64 -w 0 /path/to/file/pdf-to-convert.pdf`."
        ),
    ]
    filename: Annotated[
        str,
        Field(description="Filename of the uploaded document", examples=["file.pdf"]),
    ]

    def to_document_stream(self) -> DocumentStream:
        buf = BytesIO(base64.b64decode(self.base64_string))
        return DocumentStream(stream=buf, name=self.filename)


class ConvertDocumentHttpSourcesRequest(DocumentsConvertBase):
    http_sources: List[HttpSource]


class ConvertDocumentFileSourcesRequest(DocumentsConvertBase):
    file_sources: List[FileSource]


ConvertDocumentsRequest = Union[
    ConvertDocumentFileSourcesRequest, ConvertDocumentHttpSourcesRequest
]


# Document converters will be preloaded and stored in a dictionary
converters: Dict[str, DocumentConverter] = {}


# Custom serializer for PdfFormatOption
# (model_dump_json does not work with some classes)
def _serialize_pdf_format_option(pdf_format_option: PdfFormatOption) -> str:
    data = pdf_format_option.model_dump()

    # pipeline_options are not fully serialized by model_dump, dedicated pass
    if pdf_format_option.pipeline_options:
        data["pipeline_options"] = pdf_format_option.pipeline_options.model_dump()

    # Replace `pipeline_cls` with a string representation
    data["pipeline_cls"] = repr(data["pipeline_cls"])

    # Replace `backend` with a string representation
    data["backend"] = repr(data["backend"])

    # Handle `device` in `accelerator_options`
    if "accelerator_options" in data and "device" in data["accelerator_options"]:
        data["accelerator_options"]["device"] = repr(
            data["accelerator_options"]["device"]
        )

    # Serialize the dictionary to JSON with sorted keys to have consistent hashes
    return json.dumps(data, sort_keys=True)


# Computes the PDF pipeline options and returns the PdfFormatOption and its hash
def get_pdf_pipeline_opts(
    request: ConvertDocumentsOptions,
) -> Tuple[PdfFormatOption, str]:

    if request.ocr_engine == OcrEngine.EASYOCR:
        try:
            import easyocr  # noqa: F401
        except ImportError:
            raise HTTPException(
                status_code=400,
                detail="The requested OCR engine"
                f" (ocr_engine={request.ocr_engine.value})"
                " is not available on this system. Please choose another OCR engine "
                "or contact your system administrator.",
            )
        ocr_options: OcrOptions = EasyOcrOptions(force_full_page_ocr=request.force_ocr)
    elif request.ocr_engine == OcrEngine.TESSERACT:
        try:
            import tesserocr  # noqa: F401
        except ImportError:
            raise HTTPException(
                status_code=400,
                detail="The requested OCR engine"
                f" (ocr_engine={request.ocr_engine.value})"
                " is not available on this system. Please choose another OCR engine "
                "or contact your system administrator.",
            )
        ocr_options = TesseractOcrOptions(force_full_page_ocr=request.force_ocr)
    elif request.ocr_engine == OcrEngine.RAPIDOCR:
        try:
            from rapidocr_onnxruntime import RapidOCR  # noqa: F401
        except ImportError:
            raise HTTPException(
                status_code=400,
                detail="The requested OCR engine"
                f" (ocr_engine={request.ocr_engine.value})"
                " is not available on this system. Please choose another OCR engine "
                "or contact your system administrator.",
            )
        ocr_options = RapidOcrOptions(force_full_page_ocr=request.force_ocr)
    else:
        raise RuntimeError(f"Unexpected OCR engine type {request.ocr_engine}")

    if request.ocr_lang is not None:
        if isinstance(request.ocr_lang, str):
            ocr_options.lang = _to_list_of_strings(request.ocr_lang)
        else:
            ocr_options.lang = request.ocr_lang

    pipeline_options = PdfPipelineOptions(
        do_ocr=request.do_ocr,
        ocr_options=ocr_options,
        do_table_structure=request.do_table_structure,
    )
    pipeline_options.table_structure_options.do_cell_matching = True  # do_cell_matching
    pipeline_options.table_structure_options.mode = TableFormerMode(request.table_mode)

    if request.image_export_mode != ImageRefMode.PLACEHOLDER:
        pipeline_options.generate_page_images = True
        if request.images_scale:
            pipeline_options.images_scale = request.images_scale

    if request.pdf_backend == PdfBackend.DLPARSE_V1:
        backend: Type[PdfDocumentBackend] = DoclingParseDocumentBackend
    elif request.pdf_backend == PdfBackend.DLPARSE_V2:
        backend = DoclingParseV2DocumentBackend
    elif request.pdf_backend == PdfBackend.PYPDFIUM2:
        backend = PyPdfiumDocumentBackend
    else:
        raise RuntimeError(f"Unexpected PDF backend type {request.pdf_backend}")

    pdf_format_option = PdfFormatOption(
        pipeline_options=pipeline_options,
        backend=backend,
    )

    serialized_data = _serialize_pdf_format_option(pdf_format_option)

    options_hash = hashlib.sha1(serialized_data.encode()).hexdigest()

    return pdf_format_option, options_hash


def convert_documents(
    sources: Iterable[Union[Path, str, DocumentStream]],
    options: ConvertDocumentsOptions,
    headers: Optional[Dict[str, Any]] = None,
):
    pdf_format_option, options_hash = get_pdf_pipeline_opts(options)

    if options_hash not in converters:
        format_options: Dict[InputFormat, FormatOption] = {
            InputFormat.PDF: pdf_format_option,
            InputFormat.IMAGE: pdf_format_option,
        }

        converters[options_hash] = DocumentConverter(format_options=format_options)
        _log.info(f"We now have {len(converters)} converters in memory.")

    results: Iterator[ConversionResult] = converters[options_hash].convert_all(
        sources,
        headers=headers,
    )

    return results