Spaces:
Configuration error
Configuration error
File size: 7,112 Bytes
22bc712 44657b5 22bc712 44657b5 e6a25a6 22bc712 e6a25a6 44657b5 84568d7 22bc712 84568d7 22bc712 84568d7 22bc712 84568d7 22bc712 84568d7 22bc712 44657b5 22bc712 44657b5 84568d7 22bc712 84568d7 22bc712 84568d7 44657b5 84568d7 e6a25a6 44657b5 22bc712 e6a25a6 22bc712 84568d7 e6a25a6 84568d7 e6a25a6 84568d7 22bc712 e6a25a6 44657b5 e6a25a6 84568d7 e6a25a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import logging
import tempfile
from contextlib import asynccontextmanager
from io import BytesIO
from pathlib import Path
from typing import Annotated, Any, Dict, List, Optional, Union
from docling.datamodel.base_models import DocumentStream, InputFormat
from docling.document_converter import DocumentConverter
from fastapi import BackgroundTasks, FastAPI, UploadFile
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import RedirectResponse
from pydantic import BaseModel
from docling_serve.docling_conversion import (
ConvertDocumentFileSourcesRequest,
ConvertDocumentsOptions,
ConvertDocumentsRequest,
convert_documents,
converters,
get_pdf_pipeline_opts,
)
from docling_serve.helper_functions import FormDepends
from docling_serve.response_preparation import ConvertDocumentResponse, process_results
from docling_serve.settings import docling_serve_settings
# Set up custom logging as we'll be intermixes with FastAPI/Uvicorn's logging
class ColoredLogFormatter(logging.Formatter):
COLOR_CODES = {
logging.DEBUG: "\033[94m", # Blue
logging.INFO: "\033[92m", # Green
logging.WARNING: "\033[93m", # Yellow
logging.ERROR: "\033[91m", # Red
logging.CRITICAL: "\033[95m", # Magenta
}
RESET_CODE = "\033[0m"
def format(self, record):
color = self.COLOR_CODES.get(record.levelno, "")
record.levelname = f"{color}{record.levelname}{self.RESET_CODE}"
return super().format(record)
logging.basicConfig(
level=logging.INFO, # Set the logging level
format="%(levelname)s:\t%(asctime)s - %(name)s - %(message)s",
datefmt="%H:%M:%S",
)
# Override the formatter with the custom ColoredLogFormatter
root_logger = logging.getLogger() # Get the root logger
for handler in root_logger.handlers: # Iterate through existing handlers
if handler.formatter:
handler.setFormatter(ColoredLogFormatter(handler.formatter._fmt))
_log = logging.getLogger(__name__)
# Context manager to initialize and clean up the lifespan of the FastAPI app
@asynccontextmanager
async def lifespan(app: FastAPI):
# Converter with default options
pdf_format_option, options_hash = get_pdf_pipeline_opts(ConvertDocumentsOptions())
converters[options_hash] = DocumentConverter(
format_options={
InputFormat.PDF: pdf_format_option,
InputFormat.IMAGE: pdf_format_option,
}
)
converters[options_hash].initialize_pipeline(InputFormat.PDF)
yield
converters.clear()
# if WITH_UI:
# gradio_ui.close()
##################################
# App creation and configuration #
##################################
def create_app():
app = FastAPI(
title="Docling Serve",
lifespan=lifespan,
)
origins = ["*"]
methods = ["*"]
headers = ["*"]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=methods,
allow_headers=headers,
)
# Mount the Gradio app
if docling_serve_settings.enable_ui:
try:
import gradio as gr
from docling_serve.gradio_ui import ui as gradio_ui
tmp_output_dir = Path(tempfile.mkdtemp())
gradio_ui.gradio_output_dir = tmp_output_dir
app = gr.mount_gradio_app(
app,
gradio_ui,
path="/ui",
allowed_paths=["./logo.png", tmp_output_dir],
root_path="/ui",
)
except ImportError:
_log.warning(
"Docling Serve enable_ui is activated, but gradio is not installed. "
"Install it with `pip install docling-serve[ui]` "
"or `pip install gradio`"
)
#############################
# API Endpoints definitions #
#############################
# Favicon
@app.get("/favicon.ico", include_in_schema=False)
async def favicon():
response = RedirectResponse(
url="https://ds4sd.github.io/docling/assets/logo.png"
)
return response
# Status
class HealthCheckResponse(BaseModel):
status: str = "ok"
@app.get("/health")
def health() -> HealthCheckResponse:
return HealthCheckResponse()
# API readiness compatibility for OpenShift AI Workbench
@app.get("/api", include_in_schema=False)
def api_check() -> HealthCheckResponse:
return HealthCheckResponse()
# Convert a document from URL(s)
@app.post(
"/v1alpha/convert/source",
response_model=ConvertDocumentResponse,
responses={
200: {
"content": {"application/zip": {}},
# "description": "Return the JSON item or an image.",
}
},
)
def process_url(
background_tasks: BackgroundTasks, conversion_request: ConvertDocumentsRequest
):
sources: List[Union[str, DocumentStream]] = []
headers: Optional[Dict[str, Any]] = None
if isinstance(conversion_request, ConvertDocumentFileSourcesRequest):
for file_source in conversion_request.file_sources:
sources.append(file_source.to_document_stream())
else:
for http_source in conversion_request.http_sources:
sources.append(http_source.url)
if headers is None and http_source.headers:
headers = http_source.headers
# Note: results are only an iterator->lazy evaluation
results = convert_documents(
sources=sources, options=conversion_request.options, headers=headers
)
# The real processing will happen here
response = process_results(
background_tasks=background_tasks,
conversion_options=conversion_request.options,
conv_results=results,
)
return response
# Convert a document from file(s)
@app.post(
"/v1alpha/convert/file",
response_model=ConvertDocumentResponse,
responses={
200: {
"content": {"application/zip": {}},
}
},
)
async def process_file(
background_tasks: BackgroundTasks,
files: List[UploadFile],
options: Annotated[
ConvertDocumentsOptions, FormDepends(ConvertDocumentsOptions)
],
):
_log.info(f"Received {len(files)} files for processing.")
# Load the uploaded files to Docling DocumentStream
file_sources = []
for file in files:
buf = BytesIO(file.file.read())
name = file.filename if file.filename else "file.pdf"
file_sources.append(DocumentStream(name=name, stream=buf))
results = convert_documents(sources=file_sources, options=options)
response = process_results(
background_tasks=background_tasks,
conversion_options=options,
conv_results=results,
)
return response
return app
|