Michele Dolfi
chore: move to docling-project gh org (#95)
258f9e2 unverified
raw
history blame
12.6 kB
import asyncio
import importlib.metadata
import logging
import tempfile
from contextlib import asynccontextmanager
from io import BytesIO
from pathlib import Path
from typing import Annotated, Any, Optional, Union
from fastapi import (
BackgroundTasks,
Depends,
FastAPI,
HTTPException,
Query,
UploadFile,
WebSocket,
WebSocketDisconnect,
)
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import RedirectResponse
from docling.datamodel.base_models import DocumentStream, InputFormat
from docling.document_converter import DocumentConverter
from docling_serve.datamodel.convert import ConvertDocumentsOptions
from docling_serve.datamodel.requests import (
ConvertDocumentFileSourcesRequest,
ConvertDocumentsRequest,
)
from docling_serve.datamodel.responses import (
ConvertDocumentResponse,
HealthCheckResponse,
MessageKind,
TaskStatusResponse,
WebsocketMessage,
)
from docling_serve.docling_conversion import (
convert_documents,
converters,
get_pdf_pipeline_opts,
)
from docling_serve.engines import get_orchestrator
from docling_serve.engines.async_local.orchestrator import (
AsyncLocalOrchestrator,
TaskNotFoundError,
)
from docling_serve.helper_functions import FormDepends
from docling_serve.response_preparation import process_results
from docling_serve.settings import docling_serve_settings
# Set up custom logging as we'll be intermixes with FastAPI/Uvicorn's logging
class ColoredLogFormatter(logging.Formatter):
COLOR_CODES = {
logging.DEBUG: "\033[94m", # Blue
logging.INFO: "\033[92m", # Green
logging.WARNING: "\033[93m", # Yellow
logging.ERROR: "\033[91m", # Red
logging.CRITICAL: "\033[95m", # Magenta
}
RESET_CODE = "\033[0m"
def format(self, record):
color = self.COLOR_CODES.get(record.levelno, "")
record.levelname = f"{color}{record.levelname}{self.RESET_CODE}"
return super().format(record)
logging.basicConfig(
level=logging.INFO, # Set the logging level
format="%(levelname)s:\t%(asctime)s - %(name)s - %(message)s",
datefmt="%H:%M:%S",
)
# Override the formatter with the custom ColoredLogFormatter
root_logger = logging.getLogger() # Get the root logger
for handler in root_logger.handlers: # Iterate through existing handlers
if handler.formatter:
handler.setFormatter(ColoredLogFormatter(handler.formatter._fmt))
_log = logging.getLogger(__name__)
# Context manager to initialize and clean up the lifespan of the FastAPI app
@asynccontextmanager
async def lifespan(app: FastAPI):
# Converter with default options
pdf_format_option, options_hash = get_pdf_pipeline_opts(ConvertDocumentsOptions())
converters[options_hash] = DocumentConverter(
format_options={
InputFormat.PDF: pdf_format_option,
InputFormat.IMAGE: pdf_format_option,
}
)
converters[options_hash].initialize_pipeline(InputFormat.PDF)
orchestrator = get_orchestrator()
# Start the background queue processor
queue_task = asyncio.create_task(orchestrator.process_queue())
yield
# Cancel the background queue processor on shutdown
queue_task.cancel()
try:
await queue_task
except asyncio.CancelledError:
_log.info("Queue processor cancelled.")
converters.clear()
# if WITH_UI:
# gradio_ui.close()
##################################
# App creation and configuration #
##################################
def create_app(): # noqa: C901
try:
version = importlib.metadata.version("docling_serve")
except importlib.metadata.PackageNotFoundError:
_log.warning("Unable to get docling_serve version, falling back to 0.0.0")
version = "0.0.0"
app = FastAPI(
title="Docling Serve",
lifespan=lifespan,
version=version,
)
origins = ["*"]
methods = ["*"]
headers = ["*"]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=methods,
allow_headers=headers,
)
# Mount the Gradio app
if docling_serve_settings.enable_ui:
try:
import gradio as gr
from docling_serve.gradio_ui import ui as gradio_ui
tmp_output_dir = Path(tempfile.mkdtemp())
gradio_ui.gradio_output_dir = tmp_output_dir
app = gr.mount_gradio_app(
app,
gradio_ui,
path="/ui",
allowed_paths=["./logo.png", tmp_output_dir],
root_path="/ui",
)
except ImportError:
_log.warning(
"Docling Serve enable_ui is activated, but gradio is not installed. "
"Install it with `pip install docling-serve[ui]` "
"or `pip install gradio`"
)
#############################
# API Endpoints definitions #
#############################
# Favicon
@app.get("/favicon.ico", include_in_schema=False)
async def favicon():
response = RedirectResponse(
url="https://raw.githubusercontent.com/docling-project/docling/refs/heads/main/docs/assets/logo.svg"
)
return response
@app.get("/health")
def health() -> HealthCheckResponse:
return HealthCheckResponse()
# API readiness compatibility for OpenShift AI Workbench
@app.get("/api", include_in_schema=False)
def api_check() -> HealthCheckResponse:
return HealthCheckResponse()
# Convert a document from URL(s)
@app.post(
"/v1alpha/convert/source",
response_model=ConvertDocumentResponse,
responses={
200: {
"content": {"application/zip": {}},
# "description": "Return the JSON item or an image.",
}
},
)
def process_url(
background_tasks: BackgroundTasks, conversion_request: ConvertDocumentsRequest
):
sources: list[Union[str, DocumentStream]] = []
headers: Optional[dict[str, Any]] = None
if isinstance(conversion_request, ConvertDocumentFileSourcesRequest):
for file_source in conversion_request.file_sources:
sources.append(file_source.to_document_stream())
else:
for http_source in conversion_request.http_sources:
sources.append(http_source.url)
if headers is None and http_source.headers:
headers = http_source.headers
# Note: results are only an iterator->lazy evaluation
results = convert_documents(
sources=sources, options=conversion_request.options, headers=headers
)
# The real processing will happen here
response = process_results(
background_tasks=background_tasks,
conversion_options=conversion_request.options,
conv_results=results,
)
return response
# Convert a document from file(s)
@app.post(
"/v1alpha/convert/file",
response_model=ConvertDocumentResponse,
responses={
200: {
"content": {"application/zip": {}},
}
},
)
async def process_file(
background_tasks: BackgroundTasks,
files: list[UploadFile],
options: Annotated[
ConvertDocumentsOptions, FormDepends(ConvertDocumentsOptions)
],
):
_log.info(f"Received {len(files)} files for processing.")
# Load the uploaded files to Docling DocumentStream
file_sources = []
for file in files:
buf = BytesIO(file.file.read())
name = file.filename if file.filename else "file.pdf"
file_sources.append(DocumentStream(name=name, stream=buf))
results = convert_documents(sources=file_sources, options=options)
response = process_results(
background_tasks=background_tasks,
conversion_options=options,
conv_results=results,
)
return response
# Convert a document from URL(s) using the async api
@app.post(
"/v1alpha/convert/source/async",
response_model=TaskStatusResponse,
)
async def process_url_async(
orchestrator: Annotated[AsyncLocalOrchestrator, Depends(get_orchestrator)],
conversion_request: ConvertDocumentsRequest,
):
task = await orchestrator.enqueue(request=conversion_request)
task_queue_position = await orchestrator.get_queue_position(
task_id=task.task_id
)
return TaskStatusResponse(
task_id=task.task_id,
task_status=task.task_status,
task_position=task_queue_position,
)
# Task status poll
@app.get(
"/v1alpha/status/poll/{task_id}",
response_model=TaskStatusResponse,
)
async def task_status_poll(
orchestrator: Annotated[AsyncLocalOrchestrator, Depends(get_orchestrator)],
task_id: str,
wait: Annotated[
float, Query(help="Number of seconds to wait for a completed status.")
] = 0.0,
):
try:
task = await orchestrator.task_status(task_id=task_id, wait=wait)
task_queue_position = await orchestrator.get_queue_position(task_id=task_id)
except TaskNotFoundError:
raise HTTPException(status_code=404, detail="Task not found.")
return TaskStatusResponse(
task_id=task.task_id,
task_status=task.task_status,
task_position=task_queue_position,
)
# Task status websocket
@app.websocket(
"/v1alpha/status/ws/{task_id}",
)
async def task_status_ws(
websocket: WebSocket,
orchestrator: Annotated[AsyncLocalOrchestrator, Depends(get_orchestrator)],
task_id: str,
):
await websocket.accept()
if task_id not in orchestrator.tasks:
await websocket.send_text(
WebsocketMessage(
message=MessageKind.ERROR, error="Task not found."
).model_dump_json()
)
await websocket.close()
return
task = orchestrator.tasks[task_id]
# Track active WebSocket connections for this job
orchestrator.task_subscribers[task_id].add(websocket)
try:
task_queue_position = await orchestrator.get_queue_position(task_id=task_id)
task_response = TaskStatusResponse(
task_id=task.task_id,
task_status=task.task_status,
task_position=task_queue_position,
)
await websocket.send_text(
WebsocketMessage(
message=MessageKind.CONNECTION, task=task_response
).model_dump_json()
)
while True:
task_queue_position = await orchestrator.get_queue_position(
task_id=task_id
)
task_response = TaskStatusResponse(
task_id=task.task_id,
task_status=task.task_status,
task_position=task_queue_position,
)
await websocket.send_text(
WebsocketMessage(
message=MessageKind.UPDATE, task=task_response
).model_dump_json()
)
# each client message will be interpreted as a request for update
msg = await websocket.receive_text()
_log.debug(f"Received message: {msg}")
except WebSocketDisconnect:
_log.info(f"WebSocket disconnected for job {task_id}")
finally:
orchestrator.task_subscribers[task_id].remove(websocket)
# Task result
@app.get(
"/v1alpha/result/{task_id}",
response_model=ConvertDocumentResponse,
responses={
200: {
"content": {"application/zip": {}},
}
},
)
async def task_result(
orchestrator: Annotated[AsyncLocalOrchestrator, Depends(get_orchestrator)],
task_id: str,
):
result = await orchestrator.task_result(task_id=task_id)
if result is None:
raise HTTPException(
status_code=404,
detail="Task result not found. Please wait for a completion status.",
)
return result
return app