import logging import tempfile from contextlib import asynccontextmanager from io import BytesIO from pathlib import Path from typing import Annotated, Any, Dict, List, Optional, Union from docling.datamodel.base_models import DocumentStream, InputFormat from docling.document_converter import DocumentConverter from fastapi import BackgroundTasks, FastAPI, UploadFile from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import RedirectResponse from pydantic import BaseModel from docling_serve.docling_conversion import ( ConvertDocumentFileSourcesRequest, ConvertDocumentsOptions, ConvertDocumentsRequest, convert_documents, converters, get_pdf_pipeline_opts, ) from docling_serve.helper_functions import FormDepends from docling_serve.response_preparation import ConvertDocumentResponse, process_results from docling_serve.settings import docling_serve_settings # Set up custom logging as we'll be intermixes with FastAPI/Uvicorn's logging class ColoredLogFormatter(logging.Formatter): COLOR_CODES = { logging.DEBUG: "\033[94m", # Blue logging.INFO: "\033[92m", # Green logging.WARNING: "\033[93m", # Yellow logging.ERROR: "\033[91m", # Red logging.CRITICAL: "\033[95m", # Magenta } RESET_CODE = "\033[0m" def format(self, record): color = self.COLOR_CODES.get(record.levelno, "") record.levelname = f"{color}{record.levelname}{self.RESET_CODE}" return super().format(record) logging.basicConfig( level=logging.INFO, # Set the logging level format="%(levelname)s:\t%(asctime)s - %(name)s - %(message)s", datefmt="%H:%M:%S", ) # Override the formatter with the custom ColoredLogFormatter root_logger = logging.getLogger() # Get the root logger for handler in root_logger.handlers: # Iterate through existing handlers if handler.formatter: handler.setFormatter(ColoredLogFormatter(handler.formatter._fmt)) _log = logging.getLogger(__name__) # Context manager to initialize and clean up the lifespan of the FastAPI app @asynccontextmanager async def lifespan(app: FastAPI): # Converter with default options pdf_format_option, options_hash = get_pdf_pipeline_opts(ConvertDocumentsOptions()) converters[options_hash] = DocumentConverter( format_options={ InputFormat.PDF: pdf_format_option, InputFormat.IMAGE: pdf_format_option, } ) converters[options_hash].initialize_pipeline(InputFormat.PDF) yield converters.clear() # if WITH_UI: # gradio_ui.close() ################################## # App creation and configuration # ################################## def create_app(): app = FastAPI( title="Docling Serve", lifespan=lifespan, ) origins = ["*"] methods = ["*"] headers = ["*"] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=methods, allow_headers=headers, ) # Mount the Gradio app if docling_serve_settings.enable_ui: try: import gradio as gr from docling_serve.gradio_ui import ui as gradio_ui tmp_output_dir = Path(tempfile.mkdtemp()) gradio_ui.gradio_output_dir = tmp_output_dir app = gr.mount_gradio_app( app, gradio_ui, path="/ui", allowed_paths=["./logo.png", tmp_output_dir], root_path="/ui", ) except ImportError: _log.warning( "Docling Serve enable_ui is activated, but gradio is not installed. " "Install it with `pip install docling-serve[ui]` " "or `pip install gradio`" ) ############################# # API Endpoints definitions # ############################# # Favicon @app.get("/favicon.ico", include_in_schema=False) async def favicon(): response = RedirectResponse( url="https://ds4sd.github.io/docling/assets/logo.png" ) return response # Status class HealthCheckResponse(BaseModel): status: str = "ok" @app.get("/health") def health() -> HealthCheckResponse: return HealthCheckResponse() # API readiness compatibility for OpenShift AI Workbench @app.get("/api", include_in_schema=False) def api_check() -> HealthCheckResponse: return HealthCheckResponse() # Convert a document from URL(s) @app.post( "/v1alpha/convert/source", response_model=ConvertDocumentResponse, responses={ 200: { "content": {"application/zip": {}}, # "description": "Return the JSON item or an image.", } }, ) def process_url( background_tasks: BackgroundTasks, conversion_request: ConvertDocumentsRequest ): sources: List[Union[str, DocumentStream]] = [] headers: Optional[Dict[str, Any]] = None if isinstance(conversion_request, ConvertDocumentFileSourcesRequest): for file_source in conversion_request.file_sources: sources.append(file_source.to_document_stream()) else: for http_source in conversion_request.http_sources: sources.append(http_source.url) if headers is None and http_source.headers: headers = http_source.headers # Note: results are only an iterator->lazy evaluation results = convert_documents( sources=sources, options=conversion_request.options, headers=headers ) # The real processing will happen here response = process_results( background_tasks=background_tasks, conversion_options=conversion_request.options, conv_results=results, ) return response # Convert a document from file(s) @app.post( "/v1alpha/convert/file", response_model=ConvertDocumentResponse, responses={ 200: { "content": {"application/zip": {}}, } }, ) async def process_file( background_tasks: BackgroundTasks, files: List[UploadFile], options: Annotated[ ConvertDocumentsOptions, FormDepends(ConvertDocumentsOptions) ], ): _log.info(f"Received {len(files)} files for processing.") # Load the uploaded files to Docling DocumentStream file_sources = [] for file in files: buf = BytesIO(file.file.read()) name = file.filename if file.filename else "file.pdf" file_sources.append(DocumentStream(name=name, stream=buf)) results = convert_documents(sources=file_sources, options=options) response = process_results( background_tasks=background_tasks, conversion_options=options, conv_results=results, ) return response return app