Spaces:
Sleeping
Sleeping
File size: 35,999 Bytes
96c7aa4 c42014f 08947b3 e283321 c9655e6 96c7aa4 6aaddb5 693d539 96c7aa4 2923e58 f406bde ecdd0de 6aaddb5 693d539 6aaddb5 db174e8 4761bc7 d87735a 8ea2292 d87735a 9955275 6aaddb5 96c7aa4 c42014f 54a5d5f c42014f 6aaddb5 c42014f 4e84b19 c42014f 96c7aa4 f406bde 9955275 54a5d5f d16997e 54a5d5f c9655e6 d16997e 4571ab8 c9655e6 54a5d5f fae22f5 4571ab8 54a5d5f 4571ab8 f406bde 4571ab8 11fc4e3 f406bde 2923e58 6aaddb5 e283321 c42014f db174e8 9955275 f9c1f01 9955275 693d539 6aaddb5 9807b4d 6aaddb5 693d539 f406bde 2923e58 f9c1f01 6aaddb5 693d539 f9c1f01 4571ab8 693d539 4571ab8 693d539 2923e58 6aaddb5 693d539 f406bde c938a04 96c7aa4 f406bde 2923e58 f9c1f01 2923e58 f9c1f01 08947b3 6aaddb5 f9c1f01 6aaddb5 f9c1f01 6aaddb5 08947b3 6aaddb5 693d539 f9c1f01 693d539 7304448 6aaddb5 7304448 693d539 7304448 6aaddb5 693d539 f9c1f01 6aaddb5 693d539 6aaddb5 693d539 6aaddb5 693d539 08947b3 693d539 6aaddb5 2923e58 f9c1f01 693d539 96c7aa4 7d7a421 f406bde 693d539 db174e8 ecdd0de f9c1f01 693d539 6aaddb5 693d539 db174e8 693d539 4571ab8 693d539 f9c1f01 db174e8 ecdd0de 2923e58 f9c1f01 707d7b2 c42014f f9c1f01 6aaddb5 f9c1f01 707d7b2 11fc4e3 6aaddb5 11fc4e3 f9c1f01 2923e58 c42014f 2923e58 c42014f f9c1f01 c42014f f9c1f01 c42014f db174e8 d87735a f406bde f9c1f01 4571ab8 db174e8 f406bde 4761bc7 6aaddb5 f406bde 4761bc7 6aaddb5 f406bde 6aaddb5 f406bde 4761bc7 f406bde 3ddd1a2 6aaddb5 3ddd1a2 6aaddb5 3ddd1a2 4761bc7 3ddd1a2 f406bde 4761bc7 f9c1f01 54a5d5f c9655e6 f9c1f01 ecdd0de 54a5d5f 96c7aa4 c42014f 96c7aa4 c42014f 96c7aa4 54a5d5f c9655e6 8ea2292 d16997e c9655e6 f406bde 3ddd1a2 f9c1f01 c9655e6 ddcc09d c9655e6 f406bde d16997e 3ddd1a2 625a396 f9c1f01 625a396 f9c1f01 625a396 6aaddb5 625a396 f9c1f01 625a396 f9c1f01 693d539 625a396 6aaddb5 625a396 6aaddb5 625a396 f9c1f01 db174e8 54a5d5f d16997e ddcc09d c9655e6 fae22f5 db174e8 fae22f5 625a396 f9c1f01 c9655e6 625a396 f406bde 3ddd1a2 f406bde 3ddd1a2 6aaddb5 3ddd1a2 6aaddb5 f406bde 7d7a421 3ddd1a2 f406bde 3ddd1a2 db174e8 625a396 f9c1f01 db174e8 f9c1f01 db174e8 6aaddb5 f9c1f01 db174e8 54a5d5f d16997e ddcc09d c9655e6 fae22f5 db174e8 625a396 f9c1f01 c9655e6 625a396 3ddd1a2 625a396 3ddd1a2 f9c1f01 4761bc7 db174e8 3ddd1a2 6aaddb5 db174e8 625a396 3ddd1a2 625a396 4761bc7 d87735a 4571ab8 c9655e6 ddcc09d f9c1f01 4761bc7 d87735a c9655e6 d16997e fae22f5 c9655e6 54a5d5f c9655e6 54a5d5f c9655e6 d87735a 54a5d5f fae22f5 9955275 d16997e 9955275 f9c1f01 9955275 f9c1f01 fae22f5 9955275 d16997e d87735a f9c1f01 fae22f5 4761bc7 4571ab8 8ea2292 4571ab8 4761bc7 d87735a 4571ab8 d87735a 4761bc7 4571ab8 d87735a 4571ab8 d87735a 4571ab8 d87735a 4571ab8 9b31905 d16997e 8ea2292 9b31905 c9655e6 d87735a 8ea2292 c9655e6 d16997e c9655e6 4761bc7 db174e8 f406bde 3ddd1a2 f406bde 6aaddb5 db174e8 54a5d5f d16997e ddcc09d c9655e6 fae22f5 db174e8 f9c1f01 f406bde c9655e6 f406bde 7d7a421 f406bde 96c7aa4 9955275 f9c1f01 9955275 f9c1f01 4571ab8 f9c1f01 8ea2292 d16997e 8ea2292 4571ab8 d16997e 4571ab8 f9c1f01 4571ab8 d16997e 4571ab8 d16997e 4571ab8 8ea2292 4571ab8 8ea2292 4571ab8 fae22f5 d16997e fae22f5 f9c1f01 4571ab8 d16997e f9c1f01 4476936 f9c1f01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 |
import os
import logging
import subprocess
import tempfile
import requests
from bs4 import BeautifulSoup
import time
from urllib.parse import urljoin, urlparse
from flask import Flask, request, jsonify, render_template, session, send_from_directory, make_response
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from PIL import Image, ImageFilter, ImageEnhance
import numpy as np
from pdf2image import convert_from_bytes
import io
import torch
import hashlib
from concurrent.futures import ThreadPoolExecutor
import gc
from langdetect import detect, DetectorFactory
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
import psutil
from timeout_decorator import timeout
import re
from fuzzywuzzy import fuzz
from difflib import get_close_matches
from datetime import datetime
from init_db import initialize_database
from db_utils import execute_query
# Ensure consistent language detection
DetectorFactory.seed = 0
# Configure logging
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s [%(levelname)s] [%(process)d] %(message)s',
handlers=[logging.StreamHandler()]
)
logger = logging.getLogger(__name__)
# Set environment variable for Hugging Face cache
os.environ["HF_HOME"] = "/data/models"
# Initialize Flask app
app = Flask(__name__, static_folder='static')
# Configure SECRET_KEY
SECRET_KEY = os.environ.get('SECRET_KEY')
if not SECRET_KEY:
logger.error("SECRET_KEY environment variable is not set. Set it in Hugging Face Spaces Secrets.")
raise ValueError("SECRET_KEY is required for session management.")
app.secret_key = SECRET_KEY
logger.debug(f"SECRET_KEY hash: {hashlib.sha256(SECRET_KEY.encode()).hexdigest()[:8]}...")
# Session configuration
app.config.update(
SESSION_COOKIE_NAME='session',
SESSION_COOKIE_SAMESITE='Lax',
SESSION_COOKIE_SECURE=True, # Enable for HTTPS in Spaces
SESSION_COOKIE_HTTPONLY=True,
SESSION_COOKIE_PATH='/',
SESSION_COOKIE_DOMAIN=os.environ.get('SPACE_DOMAIN', None),
PERMANENT_SESSION_LIFETIME=7200,
APPLICATION_ROOT='/'
)
# Set SERVER_NAME for Spaces
app.config['SERVER_NAME'] = os.environ.get('SPACE_DOMAIN', None)
logger.debug(f"Flask SERVER_NAME set to: {app.config['SERVER_NAME']}")
# Fallback in-memory cache
translation_cache = {}
cache_timeout = 7200
# Model path
MODEL_PATH = "Helsinki-NLP/opus-mt-bn-en"
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg', 'pdf'}
CACHE_DIR = "/tmp/ocr_cache"
os.makedirs(CACHE_DIR, exist_ok=True)
MAX_IMAGE_DIMENSION = 600
OCR_TIMEOUT = 30
REQUEST_DELAY = 2
USER_AGENT = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
model = None
tokenizer = None
cancel_crawl_flag = False
try:
initialize_database()
logger.debug("Database initialization completed")
except Exception as e:
logger.error(f"Failed to initialize database: {str(e)}")
exit(1)
def init_driver():
chrome_options = Options()
chrome_options.add_argument("--headless")
chrome_options.add_argument("--no-sandbox")
chrome_options.add_argument("--disable-dev-shm-usage")
chrome_options.add_argument(f"user-agent={USER_AGENT}")
chrome_options.add_argument("--disable-blink-features=AutomationControlled")
chrome_options.binary_location = os.getenv("CHROMIUM_PATH", "/usr/bin/chromium")
service = Service(os.getenv("CHROMEDRIVER_PATH", "/usr/bin/chromedriver"))
driver = webdriver.Chrome(service=service, options=chrome_options)
driver.set_page_load_timeout(30)
return driver
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
def preprocess_image(image):
width, height = image.size
logger.debug(f"Original image dimensions: {width}x{height}")
target_dpi = 300
scale = min(target_dpi / 72, MAX_IMAGE_DIMENSION / max(width, height))
new_width = int(width * scale)
new_height = int(height * scale)
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
logger.debug(f"Resized image to: {new_width}x{new_height}")
image = image.convert("L")
image = ImageEnhance.Contrast(image).enhance(2.0)
image = ImageEnhance.Sharpness(image).enhance(2.0)
image_np = np.array(image)
threshold = 150
image_np = (image_np > threshold) * 255
image = Image.fromarray(image_np.astype(np.uint8))
image = image.filter(ImageFilter.MedianFilter(size=3))
return image
def split_image(image, max_dim=400):
width, height = image.size
segments = []
x_splits = (width + max_dim - 1) // max_dim
y_splits = (height + max_dim - 1) // max_dim
for i in range(x_splits):
for j in range(y_splits):
left = i * max_dim
upper = j * max_dim
right = min(left + max_dim, width)
lower = min(upper + max_dim, height)
segment = image.crop((left, upper, right, lower))
segments.append(segment)
return segments
def get_file_hash(file):
file.seek(0)
data = file.read()
file.seek(0)
return hashlib.md5(data).hexdigest()
def extract_text(file):
try:
file_hash = get_file_hash(file)
cache_path = os.path.join(CACHE_DIR, f"{file_hash}.txt")
if os.path.exists(cache_path):
with open(cache_path, "r", encoding="utf-8") as f:
logger.debug(f"Cache hit for file hash: {file_hash}")
return f.read().strip()
start_time = time.time()
logger.debug(f"Memory usage before OCR: {psutil.Process().memory_info().rss / 1024 / 1024:.2f} MB")
if file.filename.rsplit('.', 1)[1].lower() == 'pdf':
file_bytes = file.read()
images = convert_from_bytes(file_bytes, dpi=300, fmt='png')
extracted_texts = []
for img in images:
img = preprocess_image(img)
segments = split_image(img) if max(img.size) > 400 else [img]
for idx, segment in enumerate(segments):
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as temp_img_file:
segment.save(temp_img_file.name)
logger.debug(f"Saved temporary segment {idx}: {temp_img_file.name}")
with tempfile.NamedTemporaryFile(suffix='.txt', delete=False) as temp_txt_file:
tesseract_cmd = [
'tesseract', temp_img_file.name, temp_txt_file.name[:-4],
'-l', 'ben', '--psm', '4', '--oem', '1'
]
try:
result = subprocess.run(
tesseract_cmd,
timeout=OCR_TIMEOUT,
check=True,
capture_output=True,
text=True
)
logger.debug(f"Tesseract stdout (segment {idx}): {result.stdout}")
except subprocess.TimeoutExpired:
logger.error(f"OCR timed out for segment {idx}")
os.unlink(temp_img_file.name)
os.unlink(temp_txt_file.name)
return "OCR timed out. Try a simpler image or PDF."
except subprocess.CalledProcessError as e:
logger.error(f"Tesseract failed for segment {idx}: {e.stderr}")
os.unlink(temp_img_file.name)
os.unlink(temp_txt_file.name)
return f"Error extracting text: {e.stderr}"
with open(temp_txt_file.name, 'r', encoding='utf-8') as f:
text = f.read().strip()
extracted_texts.append(text)
os.unlink(temp_img_file.name)
os.unlink(temp_txt_file.name)
text = " ".join(extracted_texts)
else:
img = Image.open(file)
img = preprocess_image(img)
segments = split_image(img) if max(img.size) > 400 else [img]
extracted_texts = []
for idx, segment in enumerate(segments):
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as temp_img_file:
segment.save(temp_img_file.name)
logger.debug(f"Saved temporary segment {idx}: {temp_img_file.name}")
with tempfile.NamedTemporaryFile(suffix='.txt', delete=False) as temp_txt_file:
tesseract_cmd = [
'tesseract', temp_img_file.name, temp_txt_file.name[:-4],
'-l', 'ben', '--psm', '4', '--oem', '1'
]
try:
result = subprocess.run(
tesseract_cmd,
timeout=OCR_TIMEOUT,
check=True,
capture_output=True,
text=True
)
logger.debug(f"Tesseract stdout (segment {idx}): {result.stdout}")
except subprocess.TimeoutExpired:
logger.error(f"OCR timed out for segment {idx}")
os.unlink(temp_img_file.name)
os.unlink(temp_txt_file.name)
return "OCR timed out. Try a simpler image or PDF."
except subprocess.CalledProcessError as e:
logger.error(f"Tesseract failed for segment {idx}: {e.stderr}")
os.unlink(temp_img_file.name)
os.unlink(temp_txt_file.name)
return f"Error extracting text: {e.stderr}"
with open(temp_txt_file.name, 'r', encoding='utf-8') as f:
text = f.read().strip()
extracted_texts.append(text)
os.unlink(temp_img_file.name)
os.unlink(temp_txt_file.name)
text = " ".join(extracted_texts)
if not text.strip() or len(text.strip()) < 10:
return "No meaningful text extracted. Ensure the file contains clear Bangla text."
with open(cache_path, "w", encoding="utf-8") as f:
f.write(text)
logger.debug(f"OCR took {time.time() - start_time:.2f} seconds")
logger.debug(f"Memory usage after OCR: {psutil.Process().memory_info().rss / 1024 / 1024:.2f} MB")
gc.collect()
return text.strip()
except Exception as e:
logger.error(f"Error in extract_text: {str(e)}")
return f"Error extracting text: {str(e)}"
def crawl_single_url(url, headers, use_selenium=False):
global cancel_crawl_flag
if cancel_crawl_flag:
logger.info(f"Crawl cancelled for {url}")
return "", []
try:
time.sleep(REQUEST_DELAY)
logger.debug(f"Memory usage before crawling {url}: {psutil.Process().memory_info().rss / 1024 / 1024:.2f} MB")
if use_selenium:
driver = init_driver()
try:
driver.get(url)
WebDriverWait(driver, 10).until(
EC.presence_of_element_located((By.TAG_NAME, "body"))
)
html = driver.page_source
finally:
driver.quit()
else:
response = requests.get(url, headers=headers, timeout=15)
response.raise_for_status()
html = response.text
soup = BeautifulSoup(html, 'html.parser')
text_elements = soup.find_all(['p', 'h1', 'h2', 'h3'], limit=100)
texts = []
for element in text_elements:
text = element.get_text(strip=True)
if text and len(text) > 10:
try:
if detect(text) == 'bn':
texts.append(text)
except:
continue
bangla_text = " ".join(texts)
logger.debug(f"Memory usage after crawling {url}: {psutil.Process().memory_info().rss / 1024 / 1024:.2f} MB")
return bangla_text, []
except Exception as e:
logger.error(f"Error crawling {url}: {str(e)}")
return "", []
def load_model():
try:
logger.debug(f"Loading model and tokenizer from {MODEL_PATH}...")
start_time = time.time()
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_PATH, cache_dir='/data/models')
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, cache_dir='/data/models')
logger.debug(f"Model and tokenizer loading took {time.time() - start_time:.2f} seconds")
if torch.cuda.is_available():
model = model.cuda()
logger.debug("Model moved to GPU")
start_time = time.time()
dummy_input = tokenizer("আমি", return_tensors="pt", padding=True)
if torch.cuda.is_available():
dummy_input = {k: v.cuda() for k, v in dummy_input.items()}
_ = model.generate(**dummy_input)
logger.debug(f"Model warm-up took {time.time() - start_time:.2f} seconds")
logger.debug("Model and tokenizer loaded successfully.")
return model, tokenizer
except Exception as e:
logger.error(f"Error loading model: {e}")
raise
def initialize_model():
global model, tokenizer
if model is None and tokenizer is None:
logger.debug(f"Loading model in process {os.getpid()}...")
model, tokenizer = load_model()
else:
logger.debug(f"Model already loaded in process {os.getpid()}.")
return model, tokenizer
@timeout(300, timeout_exception=TimeoutError)
def translate_text(sentence, model, tokenizer, url=None):
start_time = time.time()
logger.debug(f"Memory usage before translation: {psutil.Process().memory_info().rss / 1024 / 1024:.2f} MB")
sentence = sentence[:10000]
max_length = 512
inputs = []
current_chunk = []
current_length = 0
sentences = re.split(r'(?<=[।!?])\s+', sentence.strip())
for sent in sentences:
sent = sent.strip()
if not sent:
continue
token_length = len(tokenizer.tokenize(sent))
if current_length + token_length > max_length:
inputs.append(" ".join(current_chunk))
current_chunk = [sent]
current_length = token_length
else:
current_chunk.append(sent)
current_length += token_length
if current_chunk:
inputs.append(" ".join(current_chunk))
def translate_chunk(chunk):
try:
input_ids = tokenizer(chunk, return_tensors="pt", padding=True, truncation=True, max_length=512)
if torch.cuda.is_available():
input_ids = {k: v.cuda() for k, v in input_ids.items()}
output_ids = model.generate(
**input_ids,
max_length=512,
num_beams=5,
length_penalty=1.0,
early_stopping=True
)
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
except Exception as e:
logger.error(f"Error translating chunk: {str(e)}")
return f"Error translating chunk: {str(e)}"
with ThreadPoolExecutor(max_workers=2) as executor:
translated_chunks = list(executor.map(translate_chunk, inputs))
translated = " ".join(translated_chunks)
translated_sentences = re.split(r'(?<=[.!?])\s+', translated.strip())
try:
translation_id = execute_query(
query="INSERT INTO translations (url, extracted_text, translated_text, translated_sentences) VALUES (?, ?, ?, ?)",
params=(url, sentence, translated, "|".join(translated_sentences))
)
logger.debug(f"Inserted translation with ID: {translation_id}")
except Exception as e:
logger.error(f"Failed to insert translation: {str(e)}")
raise
cache_key = hashlib.md5(f"{url}_{time.time()}".encode()).hexdigest()
translation_cache[cache_key] = {
'translation_id': translation_id,
'timestamp': time.time()
}
logger.debug(f"Stored translation_id {translation_id} in cache with key: {cache_key}")
expired_keys = [k for k, v in translation_cache.items() if time.time() - v['timestamp'] > cache_timeout]
for k in expired_keys:
del translation_cache[k]
logger.debug(f"Removed expired cache key: {k}")
logger.debug(f"Translation took {time.time() - start_time:.2f} seconds")
logger.debug(f"Memory usage after translation: {psutil.Process().memory_info().rss / 1024 / 1024:.2f} MB")
del inputs, translated_chunks
gc.collect()
return translated, translated_sentences, translation_id, cache_key
try:
model, tokenizer = initialize_model()
except Exception as e:
logger.error(f"Startup error: {e}")
exit(1)
@app.before_request
def log_request():
logger.debug(f"Incoming request: {request.method} {request.path} Cookies: {request.cookies.get('session', 'None')}")
@app.after_request
def log_response(response):
logger.debug(f"Response headers: {dict(response.headers)}")
if 'Set-Cookie' in response.headers:
logger.debug(f"Set-Cookie header: {response.headers['Set-Cookie']}")
logger.debug(f"Session after response: {dict(session)}")
return response
@app.route("/", methods=["GET"])
def home():
logger.debug(f"Current session: {dict(session)}")
response = make_response(render_template("index.html"))
response.headers['Cache-Control'] = 'no-store'
return response
@app.route("/debug_session", methods=["GET"])
def debug_session():
session['test_key'] = 'test_value'
session.modified = True
logger.debug(f"Set test session key: {dict(session)}")
response = make_response(jsonify({"session": dict(session), "cookies": request.cookies.get('session', 'None')}))
response.headers['Cache-Control'] = 'no-store'
return response
def process_web_translate():
start_time = time.time()
logger.debug(f"Memory usage before web_translate: {psutil.Process().memory_info().rss / 1024 / 1024:.2f} MB")
text = request.form.get("text")
file = request.files.get("file")
logger.debug(f"Received text: {text}, file: {file.filename if file else None}")
if not text and not file:
return render_template("index.html", error="Please provide text or upload a file.")
if file and allowed_file(file.filename):
logger.debug("Starting OCR extraction for uploaded file")
extracted_text = extract_text(file)
logger.debug(f"OCR result: {extracted_text}")
if extracted_text.startswith("Error") or extracted_text.startswith("OCR"):
return render_template("index.html", error=extracted_text, text=text)
try:
if detect(extracted_text) != 'bn':
return render_template("index.html", error="Extracted text is not in Bangla.", text=text)
except:
return render_template("index.html", error="Could not detect language of extracted text.", text=text)
text_to_translate = extracted_text
else:
text_to_translate = text
if text_to_translate:
try:
if detect(text_to_translate) != 'bn':
return render_template("index.html", error="Input text is not in Bangla.", text=text)
except:
return render_template("index.html", error="Could not detect language of input text.", text=text)
if not text_to_translate:
return render_template("index.html", error="No valid text to translate.", text=text)
logger.debug("Starting translation")
try:
translated, translated_sentences, translation_id, cache_key = translate_text(text_to_translate, model, tokenizer)
session['translation_id'] = translation_id
session['cache_key'] = cache_key
session['translated_text'] = translated
session.permanent = True
session.modified = True
logger.debug(f"Set session translation_id: {translation_id}, cache_key: {cache_key}, translated_text: {translated[:50]}...")
except TimeoutError:
logger.error("Translation timed out after 300 seconds")
return render_template("index.html", error="Translation timed out. Try a shorter text or check your subscription for higher limits.", text=text)
logger.debug(f"Translation result: {translated[:50]}...")
if translated.startswith("Error"):
return render_template("index.html", error=translated, text=text, extracted_text=text_to_translate)
logger.debug(f"Total web_translate took {time.time() - start_time:.2f} seconds")
logger.debug(f"Memory usage after web_translate: {psutil.Process().memory_info().rss / 1024 / 1024:.2f} MB")
logger.debug(f"Current session: {dict(session)}")
response = make_response(render_template(
"index.html",
extracted_text=text_to_translate,
translated_text=translated,
text=text,
cache_key=cache_key
))
response.headers['Cache-Control'] = 'no-store'
return response
@app.route("/web_translate", methods=["POST"])
def web_translate():
try:
start_time = time.time()
result = process_web_translate()
if time.time() - start_time > 180:
raise TimeoutError("Request timed out after 180 seconds")
return result
except TimeoutError as e:
logger.error(f"Request timed out: {str(e)}")
return render_template("index.html", error="Request timed out. Try a simpler input or check your subscription for higher limits.", text=None)
except Exception as e:
logger.error(f"Error in web_translate: {str(e)}")
return render_template("index.html", error=f"Error processing request: {str(e)}", text=None)
def process_crawl_and_translate():
global cancel_crawl_flag
cancel_crawl_flag = False
start_time = time.time()
url = request.form.get("url")
if not url:
return render_template("index.html", error="Please enter a website URL.")
parsed_url = urlparse(url)
if not parsed_url.scheme or not parsed_url.netloc:
return render_template("index.html", error="Invalid URL format.", url=url)
logger.debug(f"Starting crawl for URL: {url}")
headers = {"User-Agent": USER_AGENT}
extracted_text, _ = crawl_single_url(url, headers, use_selenium=False)
if not extracted_text:
logger.debug(f"No Bangla text found with requests for {url}, retrying with Selenium")
extracted_text, _ = crawl_single_url(url, headers, use_selenium=True)
if not extracted_text:
return render_template("index.html", error="No Bangla text found on the page.", url=url)
try:
if detect(extracted_text) != 'bn':
return render_template("index.html", error="Crawled text is not in Bangla.", url=url)
except:
return render_template("index.html", error="Could not detect language of crawled text.", url=url)
logger.debug("Starting translation")
try:
translated, translated_sentences, translation_id, cache_key = translate_text(extracted_text, model, tokenizer, url=url)
session['translation_id'] = translation_id
session['cache_key'] = cache_key
session['translated_text'] = translated
session.permanent = True
session.modified = True
logger.debug(f"Set session translation_id: {translation_id}, cache_key: {cache_key}, translated_text: {translated[:50]}...")
except TimeoutError:
logger.error("Translation timed out after 300 seconds")
return render_template("index.html", error="Translation timed out. Try a different URL or check your subscription for higher limits.", url=url)
if translated.startswith("Error"):
return render_template("index.html", error=translated, url=url, extracted_text=extracted_text)
logger.debug(f"Total crawl and translate took {time.time() - start_time:.2f} seconds")
logger.debug(f"Current session: {dict(session)}")
response = make_response(render_template(
"index.html",
extracted_text=extracted_text,
translated_text=translated,
url=url,
cache_key=cache_key
))
response.headers['Cache-Control'] = 'no-store'
return response
@app.route("/crawl_and_translate", methods=["POST"])
def crawl_and_translate():
try:
start_time = time.time()
result = process_crawl_and_translate()
logger.debug(f"Crawl and translate took {time.time() - start_time:.2f} seconds")
logger.debug(f"Session translation_id: {session.get('translation_id')}")
if time.time() - start_time > 900:
raise TimeoutError("Request timed out after 900 seconds")
return result
except TimeoutError as e:
logger.error(f"Crawl and translate request timed out: {str(e)}")
return render_template("index.html", error="Request timed out. Try a different URL or check your subscription for higher limits.", url=None)
except Exception as e:
logger.error(f"Error in crawl_and_translate: {str(e)}")
return render_template("index.html", error=f"Error processing request: {str(e)}", url=None)
@app.route("/search", methods=["POST"])
def search():
keyword = request.form.get("keyword")
page = int(request.form.get("page", 1))
context_size = int(request.form.get("context_size", 2))
context_size = max(1, min(5, context_size))
cache_key = request.form.get("cache_key")
logger.debug(f"Search request: keyword={keyword}, page={page}, context_size={context_size}, cache_key={cache_key}")
logger.debug(f"Form data: {dict(request.form)}")
logger.debug(f"Current session: {dict(session)}")
if not keyword:
return render_template("index.html", error="Please enter a search keyword.", translated_text=session.get('translated_text', ''))
try:
translation_id = session.get('translation_id')
session_cache_key = session.get('cache_key')
translated_text = session.get('translated_text', '')
logger.debug(f"Session translation_id for search: {translation_id}, session_cache_key: {session_cache_key}, translated_text: {translated_text[:50]}...")
effective_cache_key = cache_key or session_cache_key
if not translation_id and effective_cache_key in translation_cache:
cached = translation_cache.get(effective_cache_key)
if time.time() - cached['timestamp'] < cache_timeout:
translation_id = cached['translation_id']
logger.debug(f"Restored translation_id {translation_id} from cache with key: {effective_cache_key}")
else:
del translation_cache[effective_cache_key]
logger.debug(f"Cache key {effective_cache_key} expired")
if not translation_id:
logger.error("No translation_id in session or cache")
return render_template("index.html", error="No translated text available. Please crawl and translate a page first.", translated_text=translated_text)
result = execute_query(
query="SELECT translated_sentences, translated_text FROM translations WHERE id = ?",
params=(translation_id,),
fetch=True
)
logger.debug(f"Query result: {result}")
if not result:
logger.error(f"No translation found for ID: {translation_id}")
return render_template("index.html", error="Translation not found in database.", translated_text=translated_text)
translated_sentences = result[0][0].split("|") if result[0][0] else []
translated_text = result[0][1] or translated_text # Fallback to database
logger.debug(f"Retrieved {len(translated_sentences)} sentences, translated_text: {translated_text[:50]}...")
if not translated_sentences:
logger.warning("No translated sentences available")
return render_template("index.html", error="No translated sentences available.", translated_text=translated_text)
matches = []
keyword_lower = keyword.lower().strip()
keywords = keyword_lower.split()
all_words = set()
for sentence in translated_sentences:
all_words.update(sentence.lower().split())
suggestions = get_close_matches(keyword_lower, all_words, n=3, cutoff=0.8)
FUZZY_THRESHOLD = 90
for idx, sentence in enumerate(translated_sentences):
sentence_lower = sentence.lower()
exact_match = any(kw in sentence_lower for kw in keywords)
fuzzy_score = fuzz.partial_ratio(keyword_lower, sentence_lower)
if exact_match or fuzzy_score >= FUZZY_THRESHOLD:
start_idx = max(0, idx - context_size)
end_idx = min(len(translated_sentences), idx + context_size + 1)
context = " ".join(translated_sentences[start_idx:end_idx])
matches.append({"id": idx, "context": context, "score": fuzzy_score if not exact_match else 100})
matches.sort(key=lambda x: x['score'], reverse=True)
RESULTS_PER_PAGE = 5
total_matches = len(matches)
logger.debug(f"Found {total_matches} matches: {matches}")
total_pages = (total_matches + RESULTS_PER_PAGE - 1) // RESULTS_PER_PAGE
page = max(1, min(page, total_pages))
start_idx = (page - 1) * RESULTS_PER_PAGE
end_idx = start_idx + RESULTS_PER_PAGE
paginated_matches = matches[start_idx:end_idx]
logger.debug(f"Paginated matches (page {page}): {paginated_matches}")
template_vars = {
"search_results": paginated_matches,
"keyword": keyword,
"context_size": context_size,
"current_page": page,
"total_pages": total_pages,
"translated_text": translated_text,
"cache_key": cache_key,
"suggestions": suggestions if suggestions else None
}
logger.debug(f"Rendering template with variables: {template_vars}")
response = make_response(render_template(
"index.html",
**template_vars
))
response.headers['Cache-Control'] = 'no-store'
logger.debug(f"Template rendering completed for /search")
return response
except Exception as e:
logger.error(f"Error in search: {str(e)}")
return render_template("index.html", error=f"Error processing search: {str(e)}", translated_text=session.get('translated_text', ''))
@app.route("/cancel_crawl", methods=["POST"])
def cancel_crawl():
global cancel_crawl_flag
cancel_crawl_flag = True
logger.info("Crawl cancelled by user")
return jsonify({"status": "cancelled"})
@app.route("/translate", methods=["POST"])
def translate():
try:
data = request.get_json()
if not data or "text" not in data:
return jsonify({"error": "Missing 'text' field"}), 400
sentence = data["text"]
try:
if detect(sentence) != 'bn':
return jsonify({"error": "Input text is not in Bangla."}), 400
except:
return jsonify({"error": "Could not detect language of input text."}), 400
try:
translated, translated_sentences, translation_id, cache_key = translate_text(sentence, model, tokenizer)
session['translation_id'] = translation_id
session['cache_key'] = cache_key
session['translated_text'] = translated
session.permanent = True
session.modified = True
logger.debug(f"Set session translation_id: {translation_id}, cache_key: {cache_key}, translated_text: {translated[:50]}...")
except TimeoutError:
logger.error("Translation timed out after 300 seconds")
return jsonify({"error": "Translation timed out. Try a shorter text or check your subscription for higher limits."}), 500
logger.debug(f"Current session: {dict(session)}")
if translated.startswith("Error"):
return jsonify({"error": translated}), 500
return jsonify({"translated_text": translated, "cache_key": cache_key})
except Exception as e:
logger.error(f"Error in translate: {str(e)}")
return jsonify({"error": str(e)}), 500
@app.route('/static/<path:path>')
def serve_static(path):
logger.debug(f"Serving static file: {path}")
return send_from_directory('static', path)
@app.route("/debug_db", methods=["GET"])
def debug_db():
try:
result = execute_query("SELECT id, url, timestamp FROM translations", fetch=True)
logger.debug(f"Database debug: {len(result)} records retrieved")
return jsonify({"records": result, "count": len(result)})
except Exception as e:
logger.error(f"Debug DB error: {str(e)}")
return jsonify({"error": str(e)}), 500
@app.route("/debug_search", methods=["GET"])
def debug_search():
try:
translation_id = session.get('translation_id', 1)
translated_text = session.get('translated_text', '')
keyword = request.args.get("keyword", "Shimon Peres")
context_size = int(request.args.get("context_size", 2))
result = execute_query(
query="SELECT translated_sentences, translated_text FROM translations WHERE id = ?",
params=(translation_id,),
fetch=True
)
if not result:
return jsonify({"error": "No translation found for ID", "session": dict(session)}), 404
translated_sentences = result[0][0].split("|") if result[0][0] else []
translated_text = result[0][1] or translated_text
matches = []
all_words = set()
for sentence in translated_sentences:
all_words.update(sentence.lower().split())
keyword_lower = keyword.lower().strip()
keywords = keyword_lower.split()
suggestions = get_close_matches(keyword_lower, all_words, n=3, cutoff=0.8)
FUZZY_THRESHOLD = 90
for idx, sentence in enumerate(translated_sentences):
sentence_lower = sentence.lower()
exact_match = any(kw in sentence_lower for kw in keywords)
fuzzy_score = fuzz.partial_ratio(keyword_lower, sentence_lower)
if exact_match or fuzzy_score >= FUZZY_THRESHOLD:
start_idx = max(0, idx - context_size)
end_idx = min(len(translated_sentences), idx + context_size + 1)
context = " ".join(translated_sentences[start_idx:end_idx])
matches.append({"id": idx, "context": context, "score": fuzzy_score if not exact_match else 100})
matches.sort(key=lambda x: x['score'], reverse=True)
logger.debug(f"Debug search matches: {matches}")
return jsonify({
"keyword": keyword,
"context_size": context_size,
"matches": matches,
"sentences": translated_sentences,
"translated_text": translated_text,
"suggestions": suggestions,
"session": dict(session)
})
except Exception as e:
logger.error(f"Debug search error: {str(e)}")
return jsonify({"error": str(e), "session": dict(session)}), 500
if __name__ == "__main__":
port = int(os.environ.get("PORT", 7860))
app.run(host="0.0.0.0", port=port, debug=False) |