File size: 5,664 Bytes
93c4f75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import gradio as gr
import numpy as np
from PIL import Image
import io
import base64

# Import our custom modules
from utils.image_preprocessing import preprocess_image
from models.document_ai import extract_text_and_layout
from models.text_processor import process_menu_text
from models.braille_translator import text_to_braille, get_braille_metadata
from utils.pdf_generator import create_braille_pdf, create_braille_pdf_with_comparison

# Function to create a download link for a PDF
def generate_pdf(original_text, braille_text, title, comparison=False):
    """Generate a PDF file with Braille content."""
    if comparison:
        pdf_buffer = create_braille_pdf_with_comparison(original_text, braille_text, title)
    else:
        pdf_buffer = create_braille_pdf(original_text, braille_text, title)
    
    return pdf_buffer

def process_image(image, use_llm, use_context):
    """Process the uploaded image and generate results."""
    if image is None:
        return "Please upload an image first.", "", "", None
    
    # Convert to PIL Image if needed
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)
    
    # Preprocess the image
    preprocessed_img = preprocess_image(image)
    
    # Extract text using document AI
    try:
        result = extract_text_and_layout(preprocessed_img)
        
        if not result.get('words', []):
            return "No text was extracted from the image.", "", "", None
        
        raw_text = ' '.join(result['words'])
        
        # Process text with LLM if enabled
        if use_llm:
            processed_result = process_menu_text(raw_text)
            
            if processed_result['success']:
                processed_text = processed_result['structured_text']
            else:
                processed_text = raw_text
        else:
            processed_text = raw_text
        
        # Translate to Braille
        braille_result = text_to_braille(processed_text, use_context=use_context)
        
        if not braille_result['success']:
            return processed_text, "", "Braille translation failed.", None
        
        braille_text = braille_result['formatted_braille']
        
        # Generate metadata
        metadata = get_braille_metadata(processed_text)
        metadata_text = f"Translation contains {metadata['word_count']} words, {metadata['character_count']} characters, {metadata['line_count']} lines."
        
        # Return results
        return processed_text, braille_text, metadata_text, (processed_text, braille_text)
    
    except Exception as e:
        return f"Error processing image: {str(e)}", "", "", None

def create_pdf(state, pdf_title, pdf_type):
    """Create a PDF file for download."""
    if state is None or len(state) != 2:
        return None
    
    original_text, braille_text = state
    comparison = (pdf_type == "Side-by-Side Comparison")
    
    pdf_buffer = generate_pdf(original_text, braille_text, pdf_title, comparison)
    
    # Return the file for download
    return pdf_buffer

# Create the Gradio interface
with gr.Blocks(title="Menu to Braille Converter") as demo:
    gr.Markdown("# Menu to Braille Converter")
    gr.Markdown("Upload a menu image to convert it to Braille text")
    
    with gr.Row():
        with gr.Column(scale=1):
            # Input components
            image_input = gr.Image(type="pil", label="Upload Menu Image")
            
            with gr.Row():
                use_llm = gr.Checkbox(label="Use AI for text processing", value=True)
                use_context = gr.Checkbox(label="Use AI for context enhancement", value=True)
            
            process_button = gr.Button("Process Menu")
        
        with gr.Column(scale=2):
            # Output components
            processed_text = gr.Textbox(label="Processed Text", lines=8)
            braille_output = gr.Textbox(label="Braille Translation", lines=10)
            metadata_output = gr.Markdown()
            
            # Hidden state for PDF generation
            state = gr.State()
            
            # PDF download section
            with gr.Group():
                gr.Markdown("### Download Options")
                pdf_title = gr.Textbox(label="PDF Title", value="Menu in Braille")
                pdf_type = gr.Radio(
                    ["Sequential (Text then Braille)", "Side-by-Side Comparison"],
                    label="PDF Format",
                    value="Sequential (Text then Braille)"
                )
                pdf_button = gr.Button("Generate PDF")
                pdf_output = gr.File(label="Download PDF")
    
    # Set up event handlers
    process_button.click(
        process_image,
        inputs=[image_input, use_llm, use_context],
        outputs=[processed_text, braille_output, metadata_output, state]
    )
    
    pdf_button.click(
        create_pdf,
        inputs=[state, pdf_title, pdf_type],
        outputs=[pdf_output]
    )
    
    # Add examples
    gr.Examples(
        examples=["assets/sample_menus/menu1.jpg", "assets/sample_menus/menu2.jpg"],
        inputs=image_input
    )
    
    # Add about section
    with gr.Accordion("About", open=False):
        gr.Markdown("""
        This application converts menu images to Braille text using AI technologies:
        
        - Document AI for text extraction
        - LLMs for text processing and enhancement
        - Braille translation with formatting
        - PDF generation for download
        
        Created as a demonstration of AI-powered accessibility tools.
        """)

# Launch the app
if __name__ == "__main__":
    demo.launch()