Spaces:
Sleeping
Sleeping
import cv2 | |
import numpy as np | |
from PIL import Image | |
def preprocess_image(image, target_size=(1000, 1000)): | |
""" | |
Preprocess image for document analysis. | |
Args: | |
image: PIL Image object | |
target_size: Tuple of (width, height) to resize to | |
Returns: | |
Preprocessed image as numpy array | |
""" | |
# Convert PIL Image to numpy array if needed | |
if isinstance(image, Image.Image): | |
img_array = np.array(image) | |
else: | |
img_array = image | |
# Convert to RGB if grayscale | |
if len(img_array.shape) == 2: | |
img_array = cv2.cvtColor(img_array, cv2.COLOR_GRAY2RGB) | |
elif img_array.shape[2] == 4: | |
img_array = cv2.cvtColor(img_array, cv2.COLOR_RGBA2RGB) | |
# Resize image | |
img_array = cv2.resize(img_array, target_size) | |
# Enhance contrast | |
lab = cv2.cvtColor(img_array, cv2.COLOR_RGB2LAB) | |
l, a, b = cv2.split(lab) | |
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8)) | |
cl = clahe.apply(l) | |
enhanced_lab = cv2.merge((cl, a, b)) | |
enhanced_img = cv2.cvtColor(enhanced_lab, cv2.COLOR_LAB2RGB) | |
return enhanced_img | |