ChangranHuuu commited on
Commit
04958a9
·
verified ·
1 Parent(s): f9cb440

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -13
app.py CHANGED
@@ -76,7 +76,7 @@ def generate_cheatsheet_func(training_data_text, model_name_input, progress=gr.P
76
  generator_template=GENERATOR_PROMPT,
77
  cheatsheet_template=CURATOR_PROMPT,
78
  temperature=0.1,
79
- max_tokens=16384
80
  )
81
  cheatsheet_content = results_dict.get("final_cheatsheet", cheatsheet_content)
82
  except Exception as e:
@@ -107,7 +107,7 @@ def get_answers_func(user_query, model_name_input):
107
  generator_template=GENERATOR_PROMPT,
108
  cheatsheet_template=CURATOR_PROMPT,
109
  temperature=0.1,
110
- max_tokens=16384
111
  )
112
  answer_with_cheatsheet = results_with_cheatsheet.get("final_answer", "Error: Could not extract answer.")
113
  except Exception as e:
@@ -124,7 +124,7 @@ def get_answers_func(user_query, model_name_input):
124
  generator_template=GENERATOR_PROMPT,
125
  cheatsheet_template=CURATOR_PROMPT,
126
  temperature=0.1,
127
- max_tokens=16384
128
  )
129
  answer_without_cheatsheet = results_without_cheatsheet.get("final_answer", "Error: Could not extract answer.")
130
  except Exception as e:
@@ -139,23 +139,25 @@ with gr.Blocks(title="Task Caching Demo", theme=gr.themes.Default(font=[gr.theme
139
  gr.Markdown("# Task Caching Demo")
140
  gr.Markdown("Demonstrates the effect of using a dynamically generated cheatsheet (Task Caching) on model inference. Uses SambaNova API via `litellm`.")
141
 
142
- model_name_input = gr.Textbox(
143
- label="SambaNova Model Name",
144
- value="sambanova/DeepSeek-R1-Distill-Llama-70B", # Default value
145
- info="Enter the SambaNova model name (e.g., sambanova/DeepSeek-R1-Distill-Llama-70B). Ensure the 'sambanova/' prefix if required by litellm configuration."
146
- )
147
- # END OF ADDED PART
148
-
149
  training_data_example = '''
150
  Solve for 24: 1 2 3 4
151
- Solve for 24: 2 3 4 5
152
  Solve for 24: 3 4 5 6
153
  Solve for 24: 4 5 6 7
154
  '''
155
-
 
 
 
 
 
 
 
 
 
 
156
 
157
  with gr.Tabs():
158
- with gr.TabItem("1. Generate Cheatsheet (Task Caching)"):
159
  gr.Markdown("Paste your training data below, one example per line. This data will be used to build a cumulative cheatsheet. The process may take some time depending on the number of examples.")
160
  training_data_input = gr.Textbox(lines=10, label="Training Data", value=training_data_example)
161
  generate_cheatsheet_button = gr.Button("Generate Cheatsheet (Task Caching)", variant="primary")
 
76
  generator_template=GENERATOR_PROMPT,
77
  cheatsheet_template=CURATOR_PROMPT,
78
  temperature=0.1,
79
+ max_tokens=8192
80
  )
81
  cheatsheet_content = results_dict.get("final_cheatsheet", cheatsheet_content)
82
  except Exception as e:
 
107
  generator_template=GENERATOR_PROMPT,
108
  cheatsheet_template=CURATOR_PROMPT,
109
  temperature=0.1,
110
+ max_tokens=8192
111
  )
112
  answer_with_cheatsheet = results_with_cheatsheet.get("final_answer", "Error: Could not extract answer.")
113
  except Exception as e:
 
124
  generator_template=GENERATOR_PROMPT,
125
  cheatsheet_template=CURATOR_PROMPT,
126
  temperature=0.1,
127
+ max_tokens=8192
128
  )
129
  answer_without_cheatsheet = results_without_cheatsheet.get("final_answer", "Error: Could not extract answer.")
130
  except Exception as e:
 
139
  gr.Markdown("# Task Caching Demo")
140
  gr.Markdown("Demonstrates the effect of using a dynamically generated cheatsheet (Task Caching) on model inference. Uses SambaNova API via `litellm`.")
141
 
 
 
 
 
 
 
 
142
  training_data_example = '''
143
  Solve for 24: 1 2 3 4
 
144
  Solve for 24: 3 4 5 6
145
  Solve for 24: 4 5 6 7
146
  '''
147
+ with gr.Tabs():
148
+ model_name_input = gr.Textbox(
149
+ label="SambaNova Model Name",
150
+ value="sambanova/Meta-Llama-3.1-8B-Instruct", # Default value
151
+ info="Enter the SambaNova model name (e.g., sambanova/DeepSeek-R1-Distill-Llama-70B). Ensure the 'sambanova/' prefix if required by litellm configuration."
152
+ )
153
+ SAMBANOVA_API_KEY = gr.Textbox(
154
+ label="SambaNova API Key",
155
+ value="", # Default value
156
+ info="Please Enter your SambaNova API Key, otherwise by default will use Changran's key, but RPM is low"
157
+ )
158
 
159
  with gr.Tabs():
160
+ with gr.TabItem("1. Task Caching (Generate Task-Specific Cheatsheet from Training Data)"):
161
  gr.Markdown("Paste your training data below, one example per line. This data will be used to build a cumulative cheatsheet. The process may take some time depending on the number of examples.")
162
  training_data_input = gr.Textbox(lines=10, label="Training Data", value=training_data_example)
163
  generate_cheatsheet_button = gr.Button("Generate Cheatsheet (Task Caching)", variant="primary")