Create model_setup.py
Browse files- model_setup.py +83 -0
model_setup.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
Helper script to prepare models for deployment
|
4 |
+
"""
|
5 |
+
import os
|
6 |
+
import zipfile
|
7 |
+
import shutil
|
8 |
+
from pathlib import Path
|
9 |
+
|
10 |
+
def setup_bert_model():
|
11 |
+
"""Extract and setup the fine-tuned BERT model"""
|
12 |
+
|
13 |
+
zip_path = "fine_tuned_bert_sentiment.zip"
|
14 |
+
extract_path = "./fine_tuned_bert_sentiment"
|
15 |
+
|
16 |
+
if not os.path.exists(zip_path):
|
17 |
+
print(f"β {zip_path} not found. Please upload your fine-tuned BERT model.")
|
18 |
+
return False
|
19 |
+
|
20 |
+
print(f"π¦ Extracting {zip_path}...")
|
21 |
+
|
22 |
+
# Create extraction directory
|
23 |
+
os.makedirs(extract_path, exist_ok=True)
|
24 |
+
|
25 |
+
# Extract zip file
|
26 |
+
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
27 |
+
zip_ref.extractall(extract_path)
|
28 |
+
|
29 |
+
# Verify required files exist
|
30 |
+
required_files = [
|
31 |
+
"config.json",
|
32 |
+
"pytorch_model.bin",
|
33 |
+
"tokenizer_config.json",
|
34 |
+
"vocab.txt"
|
35 |
+
]
|
36 |
+
|
37 |
+
missing_files = []
|
38 |
+
for file in required_files:
|
39 |
+
if not os.path.exists(os.path.join(extract_path, file)):
|
40 |
+
missing_files.append(file)
|
41 |
+
|
42 |
+
if missing_files:
|
43 |
+
print(f"β οΈ Missing required files: {missing_files}")
|
44 |
+
return False
|
45 |
+
|
46 |
+
print("β
BERT model setup complete!")
|
47 |
+
return True
|
48 |
+
|
49 |
+
def download_fallback_models():
|
50 |
+
"""Download fallback models if needed"""
|
51 |
+
from transformers import AutoTokenizer, AutoModel
|
52 |
+
|
53 |
+
print("π₯ Downloading fallback models...")
|
54 |
+
|
55 |
+
# Download SigLIP model
|
56 |
+
try:
|
57 |
+
AutoTokenizer.from_pretrained("google/siglip-large-patch16-384")
|
58 |
+
AutoModel.from_pretrained("google/siglip-large-patch16-384")
|
59 |
+
print("β
SigLIP-Large downloaded")
|
60 |
+
except Exception as e:
|
61 |
+
print(f"β οΈ SigLIP-Large download failed: {e}")
|
62 |
+
print("π₯ Downloading SigLIP-Base as fallback...")
|
63 |
+
AutoTokenizer.from_pretrained("google/siglip-base-patch16-224")
|
64 |
+
AutoModel.from_pretrained("google/siglip-base-patch16-224")
|
65 |
+
|
66 |
+
# Download sentiment model
|
67 |
+
AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest")
|
68 |
+
AutoModel.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest")
|
69 |
+
print("β
Sentiment model downloaded")
|
70 |
+
|
71 |
+
if __name__ == "__main__":
|
72 |
+
print("π Setting up Enhanced Ensemble Model...")
|
73 |
+
|
74 |
+
# Setup BERT model
|
75 |
+
bert_success = setup_bert_model()
|
76 |
+
|
77 |
+
# Download other models
|
78 |
+
download_fallback_models()
|
79 |
+
|
80 |
+
if bert_success:
|
81 |
+
print("π All models ready for deployment!")
|
82 |
+
else:
|
83 |
+
print("β οΈ Deployment ready with fallback models. Upload your BERT model for best performance.")
|