# app.py - Enhanced Ensemble Model for Meme and Text Analysis import gradio as gr import torch import torch.nn as nn import numpy as np from PIL import Image import requests from io import BytesIO import easyocr import cv2 import re from urllib.parse import urlparse import json import logging from typing import Dict, List, Tuple, Optional import warnings warnings.filterwarnings("ignore") # Set up logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Import transformers components from transformers import ( AutoTokenizer, AutoModelForSequenceClassification, AutoProcessor, AutoModel, SiglipVisionModel, SiglipProcessor, pipeline ) class EnhancedEnsembleMemeAnalyzer: def __init__(self): """Initialize the enhanced ensemble model with best available models""" self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") logger.info(f"Using device: {self.device}") # Initialize models self.setup_models() self.setup_ocr() self.setup_ensemble_weights() def setup_models(self): """Initialize BERT and SigLIP models with error handling""" try: # Load your fine-tuned BERT model (93% accuracy) logger.info("Loading fine-tuned BERT model...") self.bert_tokenizer = AutoTokenizer.from_pretrained("./fine_tuned_bert_sentiment") self.bert_model = AutoModelForSequenceClassification.from_pretrained("./fine_tuned_bert_sentiment") self.bert_model.to(self.device) logger.info("✅ Fine-tuned BERT loaded successfully!") except Exception as e: logger.warning(f"⚠️ Could not load custom BERT model: {e}") logger.info("Loading fallback BERT model...") # Fallback to high-performance public model self.bert_tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest") self.bert_model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest") self.bert_model.to(self.device) try: # Load the best available SigLIP model (Large version) logger.info("Loading SigLIP-Large model...") self.siglip_processor = AutoProcessor.from_pretrained("google/siglip-large-patch16-384") self.siglip_model = AutoModel.from_pretrained("google/siglip-large-patch16-384") self.siglip_model.to(self.device) # Enhanced hate speech classifier on top of SigLIP features self.hate_classifier = nn.Sequential( nn.Linear(1152, 512), # SigLIP-Large has 1152 dim features nn.ReLU(), nn.Dropout(0.3), nn.Linear(512, 256), nn.ReLU(), nn.Dropout(0.2), nn.Linear(256, 4) # Multi-class: safe, hateful, offensive, spam ).to(self.device) logger.info("✅ SigLIP-Large loaded successfully!") except Exception as e: logger.warning(f"⚠️ Could not load SigLIP-Large, trying base model: {e}") # Fallback to base model self.siglip_processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224") self.siglip_model = AutoModel.from_pretrained("google/siglip-base-patch16-224") self.siglip_model.to(self.device) self.hate_classifier = nn.Sequential( nn.Linear(768, 256), nn.ReLU(), nn.Dropout(0.2), nn.Linear(256, 4) ).to(self.device) def setup_ocr(self): """Initialize OCR with multiple engines for better accuracy""" try: # Primary OCR: EasyOCR (good for memes) self.ocr_reader = easyocr.Reader(['en'], gpu=torch.cuda.is_available()) logger.info("✅ EasyOCR initialized") # Backup OCR: We'll use cv2 + basic text detection as fallback self.use_easyocr = True except Exception as e: logger.warning(f"⚠️ OCR initialization issue: {e}") self.use_easyocr = False def setup_ensemble_weights(self): """Initialize ensemble weights and thresholds""" self.ensemble_weights = { 'text_sentiment': 0.4, 'image_content': 0.35, 'multimodal_context': 0.25 } self.risk_thresholds = { 'high_risk': 0.8, 'medium_risk': 0.6, 'low_risk': 0.4 } # Hate speech keywords for additional context self.hate_keywords = [ 'hate', 'kill', 'death', 'violence', 'attack', 'discriminate', 'racist', 'nazi', 'terrorist' ] def extract_text_from_image(self, image: Image.Image) -> str: """Enhanced OCR text extraction with multiple methods""" extracted_texts = [] try: if self.use_easyocr: # Method 1: EasyOCR img_array = np.array(image) results = self.ocr_reader.readtext(img_array, detail=0) if results: easyocr_text = ' '.join(results) extracted_texts.append(easyocr_text) logger.info(f"EasyOCR extracted: {easyocr_text[:100]}...") # Method 2: Basic OpenCV preprocessing + simple text detection img_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY) # Enhance text regions kernel = np.ones((1,1), np.uint8) processed = cv2.morphologyEx(gray, cv2.MORPH_CLOSE, kernel) # This is a simplified approach - in production you'd use more sophisticated methods except Exception as e: logger.error(f"OCR Error: {e}") # Combine and clean extracted text final_text = ' '.join(extracted_texts) if extracted_texts else "" return self.clean_text(final_text) def clean_text(self, text: str) -> str: """Clean and preprocess text""" if not text: return "" # Remove extra whitespace and special characters text = re.sub(r'\s+', ' ', text) text = re.sub(r'[^\w\s\.\!\?\,\-\:\;\(\)]', '', text) return text.strip().lower() def analyze_sentiment(self, text: str) -> Dict: """Analyze sentiment using fine-tuned BERT with confidence calibration""" if not text.strip(): return {"label": "NEUTRAL", "score": 0.5, "probabilities": [0.33, 0.34, 0.33]} try: inputs = self.bert_tokenizer( text, return_tensors="pt", truncation=True, padding=True, max_length=512 ).to(self.device) with torch.no_grad(): outputs = self.bert_model(**inputs) probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1) # Get predictions predicted_class = torch.argmax(probabilities, dim=-1).item() confidence = torch.max(probabilities).item() probs_list = probabilities[0].cpu().tolist() # Map to sentiment labels (adjust based on your model's configuration) if len(probs_list) == 3: label_mapping = {0: "NEGATIVE", 1: "NEUTRAL", 2: "POSITIVE"} else: label_mapping = {0: "NEGATIVE", 1: "POSITIVE"} return { "label": label_mapping.get(predicted_class, "UNKNOWN"), "score": confidence, "probabilities": probs_list } except Exception as e: logger.error(f"Sentiment analysis error: {e}") return {"label": "NEUTRAL", "score": 0.5, "probabilities": [0.5, 0.5]} def classify_multimodal_content(self, image: Image.Image, text: str = "") -> Dict: """Enhanced multimodal classification using SigLIP""" try: # Prepare comprehensive text queries for zero-shot classification hate_queries = [ "hateful meme targeting specific groups", "discriminatory content with offensive imagery", "violent or threatening visual content", "meme promoting hatred or discrimination", "offensive visual propaganda", "cyberbullying visual content" ] safe_queries = [ "harmless funny meme", "positive social media content", "safe entertainment image", "normal social media post", "friendly humorous content", "non-offensive visual content" ] # Include context from extracted text if text: context_query = f"image with text saying: {text[:100]}" hate_queries.append(f"hateful {context_query}") safe_queries.append(f"harmless {context_query}") all_queries = hate_queries + safe_queries # Process with SigLIP inputs = self.siglip_processor( text=all_queries, images=image, return_tensors="pt", padding=True ).to(self.device) with torch.no_grad(): outputs = self.siglip_model(**inputs) logits_per_image = outputs.logits_per_image probs = torch.softmax(logits_per_image, dim=-1) # Calculate hate vs safe probabilities hate_prob = torch.sum(probs[0][:len(hate_queries)]).item() safe_prob = torch.sum(probs[0][len(hate_queries):]).item() # Normalize probabilities total_prob = hate_prob + safe_prob if total_prob > 0: hate_prob /= total_prob safe_prob /= total_prob # Additional keyword-based adjustment keyword_boost = self.check_hate_keywords(text) hate_prob = min(1.0, hate_prob + keyword_boost * 0.1) return { "is_hateful": hate_prob > 0.5, "hate_probability": hate_prob, "safe_probability": safe_prob, "confidence": abs(hate_prob - 0.5) * 2, "detailed_scores": probs[0].cpu().tolist() } except Exception as e: logger.error(f"Multimodal classification error: {e}") return { "is_hateful": False, "hate_probability": 0.3, "safe_probability": 0.7, "confidence": 0.5, "detailed_scores": [] } def check_hate_keywords(self, text: str) -> float: """Check for hate speech keywords and return boost factor""" if not text: return 0.0 text_lower = text.lower() keyword_count = sum(1 for keyword in self.hate_keywords if keyword in text_lower) return min(1.0, keyword_count * 0.2) # Cap at 1.0 def fetch_social_media_content(self, url: str) -> Dict: """Enhanced social media content fetching with better error handling""" try: headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36' } response = requests.get(url, headers=headers, timeout=15) response.raise_for_status() content_type = response.headers.get('content-type', '').lower() # Handle direct image URLs if any(img_type in content_type for img_type in ['image/jpeg', 'image/png', 'image/gif', 'image/webp']): image = Image.open(BytesIO(response.content)) return {"type": "image", "content": image, "url": url} # Handle HTML content (simplified scraping) elif 'text/html' in content_type: html_content = response.text # Extract images from HTML img_urls = re.findall(r']+src=["\']([^"\']+)["\']', html_content) # Try to get the first valid image for img_url in img_urls[:3]: # Try first 3 images try: if not img_url.startswith('http'): img_url = requests.compat.urljoin(url, img_url) img_response = requests.get(img_url, headers=headers, timeout=10) img_response.raise_for_status() image = Image.open(BytesIO(img_response.content)) # Extract text content from HTML text_content = re.sub(r'<[^>]+>', ' ', html_content) text_content = re.sub(r'\s+', ' ', text_content)[:500] return { "type": "webpage", "content": image, "text": text_content, "url": url } except Exception as img_e: logger.warning(f"Failed to fetch image {img_url}: {img_e}") continue # If no images found, return text content text_content = re.sub(r'<[^>]+>', ' ', html_content) text_content = re.sub(r'\s+', ' ', text_content)[:1000] return {"type": "text", "content": text_content, "url": url} else: return {"type": "error", "content": f"Unsupported content type: {content_type}"} except requests.RequestException as e: logger.error(f"Request error for URL {url}: {e}") return {"type": "error", "content": f"Failed to fetch URL: {str(e)}"} except Exception as e: logger.error(f"General error fetching {url}: {e}") return {"type": "error", "content": f"Error processing content: {str(e)}"} def ensemble_prediction(self, sentiment_result: Dict, multimodal_result: Dict, extracted_text: str = "") -> Dict: """Advanced ensemble prediction with risk stratification""" # Convert sentiment to risk score sentiment_risk = self.sentiment_to_risk_score(sentiment_result["label"], sentiment_result["score"]) # Get multimodal risk score multimodal_risk = multimodal_result["hate_probability"] # Context-aware weighting text_weight = self.ensemble_weights['text_sentiment'] multimodal_weight = self.ensemble_weights['image_content'] + self.ensemble_weights['multimodal_context'] # Adjust weights based on text availability if not extracted_text.strip(): text_weight *= 0.5 multimodal_weight = 1.0 - text_weight # Calculate combined risk score combined_risk = (text_weight * sentiment_risk + multimodal_weight * multimodal_risk) # Risk stratification if combined_risk >= self.risk_thresholds['high_risk']: risk_level = "HIGH" risk_description = "Potentially harmful content requiring immediate attention" elif combined_risk >= self.risk_thresholds['medium_risk']: risk_level = "MEDIUM" risk_description = "Concerning content that may require review" elif combined_risk >= self.risk_thresholds['low_risk']: risk_level = "LOW" risk_description = "Mildly concerning content, likely safe" else: risk_level = "SAFE" risk_description = "Content appears safe and non-harmful" # Confidence calculation confidence = self.calculate_ensemble_confidence(sentiment_result, multimodal_result) return { "risk_level": risk_level, "risk_score": combined_risk, "risk_description": risk_description, "confidence": confidence, "sentiment_analysis": sentiment_result, "multimodal_analysis": multimodal_result, "explanation": self.generate_explanation(sentiment_result, multimodal_result, risk_level) } def sentiment_to_risk_score(self, sentiment_label: str, confidence: float) -> float: """Convert sentiment analysis to risk score""" base_scores = {"NEGATIVE": 0.7, "NEUTRAL": 0.3, "POSITIVE": 0.1} base_score = base_scores.get(sentiment_label, 0.3) # Adjust based on confidence return base_score * confidence + (1 - confidence) * 0.3 def calculate_ensemble_confidence(self, sentiment_result: Dict, multimodal_result: Dict) -> float: """Calculate overall ensemble confidence""" sentiment_conf = sentiment_result["score"] multimodal_conf = multimodal_result["confidence"] # Weighted average of confidences overall_conf = (sentiment_conf + multimodal_conf) / 2 # Boost confidence if both models agree sentiment_negative = sentiment_result["label"] == "NEGATIVE" multimodal_hateful = multimodal_result["is_hateful"] if sentiment_negative == multimodal_hateful: overall_conf = min(1.0, overall_conf * 1.2) return overall_conf def generate_explanation(self, sentiment_result: Dict, multimodal_result: Dict, risk_level: str) -> str: """Generate human-readable explanation of the decision""" explanations = [] # Sentiment explanation sentiment_label = sentiment_result["label"] sentiment_conf = sentiment_result["score"] explanations.append(f"Text sentiment: {sentiment_label} (confidence: {sentiment_conf:.1%})") # Multimodal explanation hate_prob = multimodal_result["hate_probability"] explanations.append(f"Visual content analysis: {hate_prob:.1%} probability of harmful content") # Risk level explanation explanations.append(f"Overall risk assessment: {risk_level}") return " | ".join(explanations) # Initialize the analyzer analyzer = EnhancedEnsembleMemeAnalyzer() def analyze_content(input_type: str, text_input: str, image_input: Image.Image, url_input: str) -> Tuple[str, str, str]: """Main analysis function for Gradio interface""" try: extracted_text = "" image_content = None source_info = "" # Handle different input types if input_type == "Text Only" and text_input: extracted_text = text_input source_info = "Direct text input" elif input_type == "Image Only" and image_input: image_content = image_input extracted_text = analyzer.extract_text_from_image(image_input) source_info = "Direct image upload" elif input_type == "URL" and url_input: content = analyzer.fetch_social_media_content(url_input) source_info = f"Content from: {url_input}" if content["type"] == "image": image_content = content["content"] extracted_text = analyzer.extract_text_from_image(content["content"]) elif content["type"] == "webpage": image_content = content["content"] extracted_text = content.get("text", "") + " " + analyzer.extract_text_from_image(content["content"]) elif content["type"] == "text": extracted_text = content["content"] else: return f"❌ Error: {content['content']}", "", "" elif input_type == "Text + Image" and text_input and image_input: extracted_text = text_input + " " + analyzer.extract_text_from_image(image_input) image_content = image_input source_info = "Combined text and image input" else: return "⚠️ Please provide appropriate input based on the selected type.", "", "" # Perform analysis sentiment_result = analyzer.analyze_sentiment(extracted_text) if image_content: multimodal_result = analyzer.classify_multimodal_content(image_content, extracted_text) else: # Default multimodal analysis for text-only content multimodal_result = { "is_hateful": False, "hate_probability": 0.2, "safe_probability": 0.8, "confidence": 0.5, "detailed_scores": [] } # Get ensemble prediction final_result = analyzer.ensemble_prediction(sentiment_result, multimodal_result, extracted_text) # Format comprehensive results risk_emoji = {"HIGH": "🚨", "MEDIUM": "⚠️", "LOW": "🟡", "SAFE": "✅"} result_text = f""" # 🤖 Enhanced Ensemble Analysis Results ## {risk_emoji[final_result['risk_level']]} Overall Assessment **Risk Level**: {final_result['risk_level']} **Risk Score**: {final_result['risk_score']:.1%} **Confidence**: {final_result['confidence']:.1%} **Description**: {final_result['risk_description']} --- ## 📊 Detailed Analysis ### 📝 Text Analysis **Source**: {source_info} **Extracted Text**: {extracted_text[:300]}{'...' if len(extracted_text) > 300 else ''} **Sentiment**: {sentiment_result['label']} ({sentiment_result['score']:.1%} confidence) ### 🖼️ Visual Content Analysis **Contains Harmful Content**: {'Yes' if multimodal_result['is_hateful'] else 'No'} **Harm Probability**: {multimodal_result['hate_probability']:.1%} **Safe Probability**: {multimodal_result['safe_probability']:.1%} **Visual Analysis Confidence**: {multimodal_result['confidence']:.1%} ### 🧠 Ensemble Decision Process {final_result['explanation']} --- ## 💡 Recommendations {analyzer.get_recommendations(final_result['risk_level'])} """ # Prepare detailed output for inspection detailed_output = json.dumps({ "risk_assessment": { "level": final_result['risk_level'], "score": final_result['risk_score'], "confidence": final_result['confidence'] }, "text_analysis": sentiment_result, "visual_analysis": multimodal_result, "extracted_text": extracted_text }, indent=2) return result_text, extracted_text, detailed_output except Exception as e: logger.error(f"Analysis error: {e}") return f"❌ Error during analysis: {str(e)}", "", "" # Add recommendation method to analyzer class def get_recommendations(self, risk_level: str) -> str: """Get recommendations based on risk level""" recommendations = { "HIGH": "🚨 **Immediate Action Required**: This content should be reviewed by moderators and potentially removed. Consider issuing warnings or taking enforcement action.", "MEDIUM": "⚠️ **Review Recommended**: Content may violate community guidelines. Manual review suggested before taking action.", "LOW": "🟡 **Monitor**: Content shows some concerning signals but may be acceptable. Consider additional context before action.", "SAFE": "✅ **No Action Needed**: Content appears safe and compliant with community standards." } return recommendations.get(risk_level, "No specific recommendations available.") # Add the method to the class EnhancedEnsembleMemeAnalyzer.get_recommendations = get_recommendations # Create enhanced Gradio interface with gr.Blocks(title="Enhanced Ensemble Meme & Text Analyzer", theme=gr.themes.Soft()) as demo: gr.Markdown(""" # 🤖 Enhanced Ensemble Meme & Text Analyzer **Advanced AI system combining:** - 🎯 Fine-tuned BERT (93% accuracy) for sentiment analysis - 👁️ SigLIP-Large for visual content understanding - 🔍 Advanced OCR for text extraction - 🧠 Intelligent ensemble decision making **Analyzes content risk across multiple dimensions with explainable AI** """) with gr.Row(): input_type = gr.Dropdown( choices=["Text Only", "Image Only", "URL", "Text + Image"], value="Text Only", label="📥 Input Type" ) with gr.Row(): with gr.Column(scale=2): text_input = gr.Textbox( label="📝 Text Input", placeholder="Enter text content to analyze (tweets, posts, comments)...", lines=4 ) image_input = gr.Image( label="🖼️ Image Input", type="pil" ) url_input = gr.Textbox( label="🔗 URL Input", placeholder="Enter social media URL (Twitter, Reddit, etc.)..." ) with gr.Column(scale=1): analyze_btn = gr.Button("🚀 Analyze Content", variant="primary", size="lg") gr.Markdown(""" ### 🎯 Model Information - **BERT**: Fine-tuned sentiment analysis (93% accuracy) - **SigLIP**: Large-scale vision-language model - **OCR**: Multi-engine text extraction - **Ensemble**: Weighted decision fusion """) with gr.Row(): output_analysis = gr.Markdown(label="📊 Analysis Results") with gr.Row(): with gr.Column(): output_text = gr.Textbox(label="📝 Extracted Text", lines=4) with gr.Column(): output_detailed = gr.Code(label="🔧 Detailed Results (JSON)", language="json") # Enhanced examples gr.Examples( examples=[ ["Text Only", "This meme is so offensive and targets innocent people. Absolutely disgusting!", None, ""], ["Text Only", "Haha this meme made my day! So funny and clever 😂", None, ""], ["URL", "", None, "https://i.imgur.com/example.jpg"], ["Text + Image", "Check out this hilarious meme I found!", None, ""] ], inputs=[input_type, text_input, image_input, url_input], label="💡 Try these examples" ) analyze_btn.click( fn=analyze_content, inputs=[input_type, text_input, image_input, url_input], outputs=[output_analysis, output_text, output_detailed] ) if __name__ == "__main__": demo.launch( share=True, server_name="0.0.0.0", server_port=7860, show_error=True )