Spaces:
Sleeping
Sleeping
File size: 1,056 Bytes
b1779fd 21bab57 b1779fd 3ddadce 21bab57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForImageClassification
import gradio as gr
# Load model and processor from Hugging Face
model = AutoModelForImageClassification.from_pretrained("google/siglip2-base-patch16-naflex")
processor = AutoProcessor.from_pretrained("google/siglip2-base-patch16-naflex")
labels = model.config.id2label
def classify_meme(image: Image.Image):
inputs = processor(images=image, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
predictions = {labels[i]: float(probs[0][i]) for i in range(len(labels))}
return predictions
# Gradio interface
demo = gr.Interface(
fn=classify_meme,
inputs=gr.Image(type="pil"),
outputs=gr.Label(num_top_classes=2),
title="Meme Sentiment Classifier (SigLIP2)",
description="Upload a meme to classify its sentiment using a SigLIP2-based model."
)
if __name__ == "__main__":
demo.launch(share = True)
|