Spaces:
Running
Running
import torch | |
from PIL import Image | |
from transformers import AutoProcessor, AutoModelForImageClassification | |
import gradio as gr | |
# Load model and processor | |
from transformers import AutoModelForImageClassification, AutoProcessor | |
model = AutoModelForImageClassification.from_pretrained("model") | |
processor = AutoProcessor.from_pretrained("model") | |
model = AutoModelForImageClassification.from_pretrained(model_name) | |
processor = AutoProcessor.from_pretrained(model_name) | |
labels = model.config.id2label # e.g., {0: "non-hateful", 1: "hateful"} | |
def classify_meme(image: Image.Image): | |
inputs = processor(images=image, return_tensors="pt").to(model.device) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
probs = torch.nn.functional.softmax(outputs.logits, dim=-1) | |
predictions = {labels[i]: float(probs[0][i]) for i in range(len(labels))} | |
return predictions | |
# Gradio interface | |
demo = gr.Interface( | |
fn=classify_meme, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Label(num_top_classes=2), | |
title="Meme Sentiment Classifier (SigLIP2)", | |
description="Upload a meme to classify its sentiment using a SigLIP2-based model." | |
) | |
from transformers import AutoModelForImageClassification, AutoProcessor | |
model = AutoModelForImageClassification.from_pretrained("model") | |
processor = AutoProcessor.from_pretrained("model") | |
if __name__ == "__main__": | |
demo.launch() | |