Thesis_CLIP / app.py
Chanlefe's picture
Create app.py
b1779fd verified
raw
history blame
1.09 kB
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForImageClassification
import gradio as gr
# Load model and processor
model_name = "your-username/your-siglip2-meme-classifier" # Or local path
model = AutoModelForImageClassification.from_pretrained(model_name)
processor = AutoProcessor.from_pretrained(model_name)
labels = model.config.id2label # e.g., {0: "non-hateful", 1: "hateful"}
def classify_meme(image: Image.Image):
inputs = processor(images=image, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
predictions = {labels[i]: float(probs[0][i]) for i in range(len(labels))}
return predictions
# Gradio interface
demo = gr.Interface(
fn=classify_meme,
inputs=gr.Image(type="pil"),
outputs=gr.Label(num_top_classes=2),
title="Meme Sentiment Classifier (SigLIP2)",
description="Upload a meme to classify its sentiment using a SigLIP2-based model."
)
if __name__ == "__main__":
demo.launch()