Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,34 +4,27 @@ from transformers import AutoProcessor, AutoModelForImageClassification
|
|
4 |
import gradio as gr
|
5 |
import pytesseract
|
6 |
|
7 |
-
|
8 |
-
# OCR: extract text from image
|
9 |
-
extracted_text = pytesseract.image_to_string(image)
|
10 |
-
|
11 |
-
# Process image with SigLIP2 model
|
12 |
-
inputs = processor(images=image, return_tensors="pt").to(model.device)
|
13 |
-
with torch.no_grad():
|
14 |
-
outputs = model(**inputs)
|
15 |
-
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
16 |
-
predictions = {labels[i]: float(probs[0][i]) for i in range(len(labels))}
|
17 |
-
|
18 |
-
return {
|
19 |
-
"Predictions": predictions,
|
20 |
-
"Extracted Text": extracted_text.strip()
|
21 |
-
}
|
22 |
-
|
23 |
-
# Load model and processor from Hugging Face
|
24 |
model = AutoModelForImageClassification.from_pretrained("google/siglip2-base-patch16-naflex")
|
25 |
processor = AutoProcessor.from_pretrained("google/siglip2-base-patch16-naflex")
|
26 |
labels = model.config.id2label
|
27 |
|
|
|
28 |
def classify_meme(image: Image.Image):
|
|
|
|
|
|
|
|
|
29 |
inputs = processor(images=image, return_tensors="pt").to(model.device)
|
30 |
with torch.no_grad():
|
31 |
outputs = model(**inputs)
|
32 |
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
33 |
predictions = {labels[i]: float(probs[0][i]) for i in range(len(labels))}
|
34 |
-
|
|
|
|
|
|
|
|
|
35 |
|
36 |
# Gradio interface
|
37 |
demo = gr.Interface(
|
@@ -45,7 +38,5 @@ demo = gr.Interface(
|
|
45 |
description="Upload a meme to classify its sentiment and extract text using OCR."
|
46 |
)
|
47 |
|
48 |
-
|
49 |
if __name__ == "__main__":
|
50 |
-
demo.launch(
|
51 |
-
|
|
|
4 |
import gradio as gr
|
5 |
import pytesseract
|
6 |
|
7 |
+
# Load model and processor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
model = AutoModelForImageClassification.from_pretrained("google/siglip2-base-patch16-naflex")
|
9 |
processor = AutoProcessor.from_pretrained("google/siglip2-base-patch16-naflex")
|
10 |
labels = model.config.id2label
|
11 |
|
12 |
+
# Classify meme and extract text
|
13 |
def classify_meme(image: Image.Image):
|
14 |
+
# OCR: extract text from image
|
15 |
+
extracted_text = pytesseract.image_to_string(image)
|
16 |
+
|
17 |
+
# Process image with SigLIP2 model
|
18 |
inputs = processor(images=image, return_tensors="pt").to(model.device)
|
19 |
with torch.no_grad():
|
20 |
outputs = model(**inputs)
|
21 |
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
22 |
predictions = {labels[i]: float(probs[0][i]) for i in range(len(labels))}
|
23 |
+
|
24 |
+
return {
|
25 |
+
"Predictions": predictions,
|
26 |
+
"Extracted Text": extracted_text.strip()
|
27 |
+
}
|
28 |
|
29 |
# Gradio interface
|
30 |
demo = gr.Interface(
|
|
|
38 |
description="Upload a meme to classify its sentiment and extract text using OCR."
|
39 |
)
|
40 |
|
|
|
41 |
if __name__ == "__main__":
|
42 |
+
demo.launch()
|
|