Spaces:
Sleeping
Sleeping
Create train.py
Browse files
train.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoProcessor, AutoModelForImageClassification, TrainingArguments, Trainer
|
2 |
+
from datasets import load_dataset
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load dataset from the 'dataset' folder
|
6 |
+
dataset = load_dataset("imagefolder", data_dir="dataset", split="train", label_column="label")
|
7 |
+
|
8 |
+
# Load model and processor
|
9 |
+
model = AutoModelForImageClassification.from_pretrained("google/siglip2-base-patch16-naflex", num_labels=2)
|
10 |
+
processor = AutoProcessor.from_pretrained("google/siglip2-base-patch16-naflex")
|
11 |
+
|
12 |
+
# Preprocess the dataset
|
13 |
+
def transform(example):
|
14 |
+
inputs = processor(images=example["image"], return_tensors="pt")
|
15 |
+
inputs["label"] = example["label"]
|
16 |
+
return inputs
|
17 |
+
|
18 |
+
dataset = dataset.map(transform, batched=True)
|
19 |
+
|
20 |
+
# Training setup
|
21 |
+
training_args = TrainingArguments(
|
22 |
+
output_dir="./siglip2-meme-classifier",
|
23 |
+
per_device_train_batch_size=8,
|
24 |
+
num_train_epochs=3,
|
25 |
+
save_steps=100,
|
26 |
+
logging_dir="./logs",
|
27 |
+
)
|
28 |
+
|
29 |
+
trainer = Trainer(
|
30 |
+
model=model,
|
31 |
+
args=training_args,
|
32 |
+
train_dataset=dataset,
|
33 |
+
)
|
34 |
+
|
35 |
+
# Start training
|
36 |
+
trainer.train()
|
37 |
+
|
38 |
+
# Save the fine-tuned model and processor
|
39 |
+
model.save_pretrained("model")
|
40 |
+
processor.save_pretrained("model")
|