Spaces:
Sleeping
Sleeping
Commit
·
d262fb3
1
Parent(s):
d8b9ce2
made models clickable
Browse files- app.py +28 -45
- src/assets/text_content.py +2 -0
- src/utils.py +62 -0
app.py
CHANGED
|
@@ -1,69 +1,48 @@
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import pandas as pd
|
| 4 |
-
from huggingface_hub import HfApi, Repository
|
| 5 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 6 |
|
| 7 |
from src.assets.text_content import TITLE, INTRODUCTION_TEXT
|
| 8 |
from src.assets.css_html_js import custom_css, get_window_url_params
|
|
|
|
| 9 |
|
| 10 |
-
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None)
|
| 11 |
|
| 12 |
LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard"
|
| 13 |
-
LLM_PERF_DATASET_REPO = "optimum/llm-perf"
|
|
|
|
| 14 |
|
|
|
|
| 15 |
|
| 16 |
-
def restart_space():
|
| 17 |
-
HfApi().restart_space(
|
| 18 |
-
repo_id=LLM_PERF_LEADERBOARD_REPO, token=OPTIMUM_TOKEN
|
| 19 |
-
)
|
| 20 |
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
if OPTIMUM_TOKEN:
|
| 25 |
-
print("Loading LLM-Perf-Dataset from Hub...")
|
| 26 |
-
llm_perf_repo = Repository(
|
| 27 |
-
local_dir="./llm-perf/",
|
| 28 |
-
clone_from=LLM_PERF_DATASET_REPO,
|
| 29 |
-
token=OPTIMUM_TOKEN,
|
| 30 |
-
repo_type="dataset",
|
| 31 |
-
)
|
| 32 |
-
llm_perf_repo.git_pull()
|
| 33 |
|
| 34 |
-
return llm_perf_repo
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
def get_leaderboard_df():
|
| 38 |
-
if llm_perf_repo:
|
| 39 |
-
llm_perf_repo.git_pull()
|
| 40 |
-
|
| 41 |
-
df = pd.read_csv("./llm-perf/reports/cuda_1_100/inference_report.csv")
|
| 42 |
df = df[["model", "backend.name", "backend.torch_dtype", "backend.quantization",
|
| 43 |
"generate.latency(s)", "generate.throughput(tokens/s)"]]
|
| 44 |
|
|
|
|
|
|
|
| 45 |
df.rename(columns={
|
| 46 |
"model": "Model",
|
| 47 |
-
"backend.name": "Backend",
|
| 48 |
-
"backend.torch_dtype": "
|
| 49 |
-
"backend.quantization": "Quantization",
|
| 50 |
-
"generate.latency(s)": "Latency (s)",
|
| 51 |
-
"generate.throughput(tokens/s)": "Throughput (tokens/s)"
|
| 52 |
}, inplace=True)
|
| 53 |
|
| 54 |
-
df.sort_values(by=["Throughput (tokens/s)"],
|
|
|
|
| 55 |
|
| 56 |
return df
|
| 57 |
|
| 58 |
|
| 59 |
-
|
| 60 |
-
leaderboard_df = get_leaderboard_df()
|
| 61 |
-
|
| 62 |
-
return leaderboard_df
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
llm_perf_repo = load_dataset_repo()
|
| 66 |
-
|
| 67 |
demo = gr.Blocks(css=custom_css)
|
| 68 |
with demo:
|
| 69 |
gr.HTML(TITLE)
|
|
@@ -71,15 +50,19 @@ with demo:
|
|
| 71 |
|
| 72 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 73 |
with gr.TabItem("Vanilla Benchmark", elem_id="vanilla-benchmark", id=0):
|
| 74 |
-
|
|
|
|
| 75 |
leaderboard_table_lite = gr.components.Dataframe(
|
| 76 |
-
value=
|
| 77 |
-
headers=
|
| 78 |
-
|
| 79 |
-
elem_id="leaderboard-table-lite",
|
| 80 |
)
|
| 81 |
|
|
|
|
|
|
|
| 82 |
scheduler = BackgroundScheduler()
|
| 83 |
scheduler.add_job(restart_space, "interval", seconds=3600)
|
| 84 |
scheduler.start()
|
|
|
|
|
|
|
| 85 |
demo.queue(concurrency_count=40).launch()
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import pandas as pd
|
|
|
|
| 4 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 5 |
|
| 6 |
from src.assets.text_content import TITLE, INTRODUCTION_TEXT
|
| 7 |
from src.assets.css_html_js import custom_css, get_window_url_params
|
| 8 |
+
from src.utils import restart_space, load_dataset_repo, make_clickable_model
|
| 9 |
|
|
|
|
| 10 |
|
| 11 |
LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard"
|
| 12 |
+
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset"
|
| 13 |
+
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN")
|
| 14 |
|
| 15 |
+
llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN)
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
def get_vanilla_benchmark_df():
|
| 19 |
+
if llm_perf_dataset_repo:
|
| 20 |
+
llm_perf_dataset_repo.git_pull()
|
| 21 |
|
| 22 |
+
df = pd.read_csv(
|
| 23 |
+
"./llm-perf-dataset/reports/cuda_1_100/inference_report.csv")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
df = df[["model", "backend.name", "backend.torch_dtype", "backend.quantization",
|
| 26 |
"generate.latency(s)", "generate.throughput(tokens/s)"]]
|
| 27 |
|
| 28 |
+
df["model"] = df["model"].apply(make_clickable_model)
|
| 29 |
+
|
| 30 |
df.rename(columns={
|
| 31 |
"model": "Model",
|
| 32 |
+
"backend.name": "Backend 🏭",
|
| 33 |
+
"backend.torch_dtype": "Load dtype",
|
| 34 |
+
"backend.quantization": "Quantization 🗜️",
|
| 35 |
+
"generate.latency(s)": "Latency (s) ⬇️",
|
| 36 |
+
"generate.throughput(tokens/s)": "Throughput (tokens/s) ⬆️",
|
| 37 |
}, inplace=True)
|
| 38 |
|
| 39 |
+
df.sort_values(by=["Throughput (tokens/s) ⬆️"],
|
| 40 |
+
ascending=False, inplace=True)
|
| 41 |
|
| 42 |
return df
|
| 43 |
|
| 44 |
|
| 45 |
+
# Define demo interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
demo = gr.Blocks(css=custom_css)
|
| 47 |
with demo:
|
| 48 |
gr.HTML(TITLE)
|
|
|
|
| 50 |
|
| 51 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 52 |
with gr.TabItem("Vanilla Benchmark", elem_id="vanilla-benchmark", id=0):
|
| 53 |
+
|
| 54 |
+
vanilla_benchmark_df = get_vanilla_benchmark_df()
|
| 55 |
leaderboard_table_lite = gr.components.Dataframe(
|
| 56 |
+
value=vanilla_benchmark_df,
|
| 57 |
+
headers=vanilla_benchmark_df.columns.tolist(),
|
| 58 |
+
elem_id="vanilla-benchmark",
|
|
|
|
| 59 |
)
|
| 60 |
|
| 61 |
+
|
| 62 |
+
# Restart space every hour
|
| 63 |
scheduler = BackgroundScheduler()
|
| 64 |
scheduler.add_job(restart_space, "interval", seconds=3600)
|
| 65 |
scheduler.start()
|
| 66 |
+
|
| 67 |
+
# Launch demo
|
| 68 |
demo.queue(concurrency_count=40).launch()
|
src/assets/text_content.py
CHANGED
|
@@ -2,4 +2,6 @@ TITLE = """<h1 align="center" id="space-title">🤗 Open LLM-Perf Leaderboard</h
|
|
| 2 |
|
| 3 |
INTRODUCTION_TEXT = f"""
|
| 4 |
The 🤗 Open LLM-Perf Leaderboard aims to benchmark the performance (latency & throughput) of Large Language Models (LLMs) on different backends and hardwares using [Optimum-Benchmark](https://github.com/huggingface/optimum-benchmark)
|
|
|
|
|
|
|
| 5 |
"""
|
|
|
|
| 2 |
|
| 3 |
INTRODUCTION_TEXT = f"""
|
| 4 |
The 🤗 Open LLM-Perf Leaderboard aims to benchmark the performance (latency & throughput) of Large Language Models (LLMs) on different backends and hardwares using [Optimum-Benchmark](https://github.com/huggingface/optimum-benchmark)
|
| 5 |
+
|
| 6 |
+
🤗 Anyone from the community can submit a model for automated benchmarking on the 🤗 GPU cluster, as long as it is a 🤗 Transformers model with weights on the Hub. We also support benchmarks of models with delta-weights for non-commercial licensed models, such as LLaMa.
|
| 7 |
"""
|
src/utils.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from huggingface_hub import HfApi, Repository
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
def restart_space(LLM_PERF_LEADERBOARD_REPO, OPTIMUM_TOKEN):
|
| 5 |
+
HfApi().restart_space(
|
| 6 |
+
repo_id=LLM_PERF_LEADERBOARD_REPO, token=OPTIMUM_TOKEN
|
| 7 |
+
)
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN):
|
| 11 |
+
llm_perf_repo = None
|
| 12 |
+
if OPTIMUM_TOKEN:
|
| 13 |
+
print("Loading LLM-Perf-Dataset from Hub...")
|
| 14 |
+
llm_perf_repo = Repository(
|
| 15 |
+
local_dir="./llm-perf/",
|
| 16 |
+
clone_from=LLM_PERF_DATASET_REPO,
|
| 17 |
+
token=OPTIMUM_TOKEN,
|
| 18 |
+
repo_type="dataset",
|
| 19 |
+
)
|
| 20 |
+
llm_perf_repo.git_pull()
|
| 21 |
+
|
| 22 |
+
return llm_perf_repo
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
LLAMAS = ["huggingface/llama-7b", "huggingface/llama-13b",
|
| 26 |
+
"huggingface/llama-30b", "huggingface/llama-65b"]
|
| 27 |
+
KOALA_LINK = "https://huggingface.co/TheBloke/koala-13B-HF"
|
| 28 |
+
VICUNA_LINK = "https://huggingface.co/lmsys/vicuna-13b-delta-v1.1"
|
| 29 |
+
OASST_LINK = "https://huggingface.co/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"
|
| 30 |
+
DOLLY_LINK = "https://huggingface.co/databricks/dolly-v2-12b"
|
| 31 |
+
MODEL_PAGE = "https://huggingface.co/models"
|
| 32 |
+
LLAMA_LINK = "https://ai.facebook.com/blog/large-language-model-llama-meta-ai/"
|
| 33 |
+
VICUNA_LINK = "https://huggingface.co/CarperAI/stable-vicuna-13b-delta"
|
| 34 |
+
ALPACA_LINK = "https://crfm.stanford.edu/2023/03/13/alpaca.html"
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def model_hyperlink(link, model_name):
|
| 38 |
+
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def make_clickable_model(model_name):
|
| 42 |
+
link = f"https://huggingface.co/{model_name}"
|
| 43 |
+
|
| 44 |
+
if model_name in LLAMAS:
|
| 45 |
+
link = LLAMA_LINK
|
| 46 |
+
model_name = model_name.split("/")[1]
|
| 47 |
+
elif model_name == "HuggingFaceH4/stable-vicuna-13b-2904":
|
| 48 |
+
link = VICUNA_LINK
|
| 49 |
+
model_name = "stable-vicuna-13b"
|
| 50 |
+
elif model_name == "HuggingFaceH4/llama-7b-ift-alpaca":
|
| 51 |
+
link = ALPACA_LINK
|
| 52 |
+
model_name = "alpaca-13b"
|
| 53 |
+
if model_name == "dolly-12b":
|
| 54 |
+
link = DOLLY_LINK
|
| 55 |
+
elif model_name == "vicuna-13b":
|
| 56 |
+
link = VICUNA_LINK
|
| 57 |
+
elif model_name == "koala-13b":
|
| 58 |
+
link = KOALA_LINK
|
| 59 |
+
elif model_name == "oasst-12b":
|
| 60 |
+
link = OASST_LINK
|
| 61 |
+
|
| 62 |
+
return model_hyperlink(link, model_name)
|