Spaces:
Running
Running
import os | |
import gradio as gr | |
import gradio.blocks | |
from gradio.blocks import Blocks | |
original_get_api_info = Blocks.get_api_info | |
def safe_get_api_info(self): | |
try: | |
return original_get_api_info(self) | |
except Exception as e: | |
print("⚠️ Failed to generate API schema:", e) | |
return {} | |
import re | |
import pandas as pd | |
from io import StringIO | |
import rdkit | |
from rdkit import Chem | |
from rdkit.Chem import AllChem, Draw | |
import numpy as np | |
from PIL import Image, ImageDraw, ImageFont | |
import matplotlib.pyplot as plt | |
import matplotlib.patches as patches | |
from io import BytesIO | |
import tempfile | |
from rdkit import Chem | |
class PeptideAnalyzer: | |
def __init__(self): | |
self.bond_patterns = [ | |
#(r'OC\(=O\)', 'ester'), # Ester bond | |
(r'N\(C\)C\(=O\)', 'n_methyl'), # N-methylated peptide bond | |
(r'N[0-9]C\(=O\)', 'proline'), # Proline peptide bond | |
(r'NC\(=O\)', 'peptide'), # Standard peptide bond | |
(r'C\(=O\)N\(C\)', 'n_methyl_reverse'), # Reverse N-methylated | |
(r'C\(=O\)N[12]?', 'peptide_reverse') # Reverse peptide bond | |
] | |
self.complex_residue_patterns = [ | |
# Kpg - Lys(palmitoyl-Glu-OtBu) | |
(r'\[C[@]H\]\(CCCNC\(=O\)CCC\[C@@H\]\(NC\(=O\)CCCCCCCCCCCCCCCC\)C\(=O\)OC\(C\)\(C\)C\)', 'Kpg'), | |
(r'CCCCCCCCCCCCCCCCC\(=O\)N\[C@H\]\(CCCC\(=O\)NCCC\[C@@H\]', 'Kpg'), | |
(r'\[C[@]?H\]\(CSC\(c\d+ccccc\d+\)\(c\d+ccccc\d+\)c\d+ccc\(OC\)cc\d+\)', 'Cmt'), | |
(r'CSC\(c.*?c.*?OC\)', 'Cmt'), # Core structure of Cys-Mmt group | |
(r'COc.*?ccc\(C\(SC', 'Cmt'), # Start of Cmt in cyclic peptides | |
(r'c2ccccc2\)c2ccccc2\)cc', 'Cmt'), # End of Cmt in cyclic peptides | |
# Glu(OAll) | |
(r'C=CCOC\(=O\)CC\[C@@H\]', 'Eal'), | |
#(r'COc\d+ccc\(C\(SC\[C@@H\]\d+.*?\)\(c\d+ccccc\d+\)c\d+ccccc\d+\)cc\d+', 'Cmt-cyclic'), | |
# Dtg - Asp(OtBu)-(Dmb)Gly | |
(r'CN\(Cc\d+ccc\(OC\)cc\d+OC\)C\(=O\)\[C@H\]\(CC\(=O\)OC\(C\)\(C\)C\)', 'Dtg'), | |
(r'C\(=O\)N\(CC\d+=C\(C=C\(C=C\d+\)OC\)OC\)CC\(=O\)', 'Dtg'), | |
(r'N\[C@@H\]\(CC\(=O\)OC\(C\)\(C\)C\)C\(=O\)N\(CC\d+=C\(C=C\(C=C\d+\)OC\)OC\)CC\(=O\)', 'Dtg'), | |
] | |
# Three to one letter code mapping | |
self.three_to_one = { | |
'Ala': 'A', 'Cys': 'C', 'Asp': 'D', 'Glu': 'E', | |
'Phe': 'F', 'Gly': 'G', 'His': 'H', 'Ile': 'I', | |
'Lys': 'K', 'Leu': 'L', 'Met': 'M', 'Asn': 'N', | |
'Pro': 'P', 'Gln': 'Q', 'Arg': 'R', 'Ser': 'S', | |
'Thr': 'T', 'Val': 'V', 'Trp': 'W', 'Tyr': 'Y', | |
'ala': 'a', 'cys': 'c', 'asp': 'd', 'glu': 'e', | |
'phe': 'f', 'gly': 'g', 'his': 'h', 'ile': 'i', | |
'lys': 'k', 'leu': 'l', 'met': 'm', 'asn': 'n', | |
'pro': 'p', 'gln': 'q', 'arg': 'r', 'ser': 's', | |
'thr': 't', 'val': 'v', 'trp': 'w', 'tyr': 'y', 'Cmt-cyclic': 'Ĉ', | |
'Aib': 'Ŷ', 'Dtg': 'Ĝ', 'Cmt': 'Ĉ', 'Eal': 'Ė', 'Nml': "Ŀ", 'Nma': 'Ṃ', | |
'Kpg': 'Ƙ', 'Tpb': 'Ṯ', 'Cyl': 'Ċ', 'Nle': 'Ł', 'Hph': 'Ĥ', 'Cys-Cys': 'CC', 'cys-cys': 'cc', | |
} | |
def preprocess_complex_residues(self, smiles): | |
complex_positions = [] | |
for pattern, residue_type in self.complex_residue_patterns: | |
for match in re.finditer(pattern, smiles): | |
# Only add if this position doesn't overlap with existing matches | |
if not any(pos['start'] <= match.start() < pos['end'] or | |
pos['start'] < match.end() <= pos['end'] for pos in complex_positions): | |
complex_positions.append({ | |
'start': match.start(), | |
'end': match.end(), | |
'type': residue_type, | |
'pattern': match.group() | |
}) | |
# Sort by position (to handle potential overlapping matches) | |
complex_positions.sort(key=lambda x: x['start']) | |
if not complex_positions: | |
return smiles, [] | |
# Build a new SMILES string, protecting complex residues | |
preprocessed_smiles = smiles | |
offset = 0 # Track offset from replacements | |
protected_residues = [] | |
for pos in complex_positions: | |
start = pos['start'] + offset | |
end = pos['end'] + offset | |
complex_part = preprocessed_smiles[start:end] | |
if not ('[C@H]' in complex_part or '[C@@H]' in complex_part): | |
continue | |
placeholder = f"COMPLEX_RESIDUE_{len(protected_residues)}" | |
preprocessed_smiles = preprocessed_smiles[:start] + placeholder + preprocessed_smiles[end:] | |
offset += len(placeholder) - (end - start) | |
protected_residues.append({ | |
'placeholder': placeholder, | |
'type': pos['type'], | |
'content': complex_part | |
}) | |
#print(f"Protected {pos['type']}: {complex_part[:20]}... as {placeholder}") | |
return preprocessed_smiles, protected_residues | |
def is_peptide(self, smiles): | |
"""Check if the SMILES represents a peptide structure""" | |
mol = Chem.MolFromSmiles(smiles) | |
if mol is None: | |
return False | |
# Look for peptide bonds: NC(=O) pattern | |
peptide_bond_pattern = Chem.MolFromSmarts('[NH][C](=O)') | |
if mol.HasSubstructMatch(peptide_bond_pattern): | |
return True | |
# Look for N-methylated peptide bonds: N(C)C(=O) pattern | |
n_methyl_pattern = Chem.MolFromSmarts('[N;H0;$(NC)](C)[C](=O)') | |
if mol.HasSubstructMatch(n_methyl_pattern): | |
return True | |
return False | |
def is_cyclic(self, smiles): | |
"""Improved cyclic peptide detection""" | |
# Check for C-terminal carboxyl | |
if smiles.endswith('C(=O)O'): | |
return False, [], [] | |
# Find all numbers used in ring closures | |
ring_numbers = re.findall(r'(?:^|[^c])[0-9](?=[A-Z@\(\)])', smiles) | |
# Find aromatic ring numbers | |
aromatic_matches = re.findall(r'c[0-9](?:ccccc|c\[nH\]c)[0-9]', smiles) | |
aromatic_cycles = [] | |
for match in aromatic_matches: | |
numbers = re.findall(r'[0-9]', match) | |
aromatic_cycles.extend(numbers) | |
# Numbers that aren't part of aromatic rings are peptide cycles | |
peptide_cycles = [n for n in ring_numbers if n not in aromatic_cycles] | |
is_cyclic = len(peptide_cycles) > 0 and not smiles.endswith('C(=O)O') | |
return is_cyclic, peptide_cycles, aromatic_cycles | |
def split_on_bonds(self, smiles, protected_residues=None): | |
"""Split SMILES into segments based on peptide bonds, with improved handling of protected residues""" | |
positions = [] | |
used = set() | |
# First, handle protected complex residues if any | |
if protected_residues: | |
for residue in protected_residues: | |
match = re.search(residue['placeholder'], smiles) | |
if match: | |
positions.append({ | |
'start': match.start(), | |
'end': match.end(), | |
'type': 'complex', | |
'pattern': residue['placeholder'], | |
'residue_type': residue['type'], | |
'content': residue['content'] | |
}) | |
used.update(range(match.start(), match.end())) | |
# Find all peptide bonds | |
bond_positions = [] | |
# Find Gly pattern first | |
gly_pattern = r'NCC\(=O\)' | |
for match in re.finditer(gly_pattern, smiles): | |
if not any(p in range(match.start(), match.end()) for p in used): | |
bond_positions.append({ | |
'start': match.start(), | |
'end': match.end(), | |
'type': 'gly', | |
'pattern': match.group() | |
}) | |
used.update(range(match.start(), match.end())) | |
for pattern, bond_type in self.bond_patterns: | |
for match in re.finditer(pattern, smiles): | |
if not any(p in range(match.start(), match.end()) for p in used): | |
bond_positions.append({ | |
'start': match.start(), | |
'end': match.end(), | |
'type': bond_type, | |
'pattern': match.group() | |
}) | |
used.update(range(match.start(), match.end())) | |
bond_positions.sort(key=lambda x: x['start']) | |
# Combine complex residue positions and bond positions | |
all_positions = positions + bond_positions | |
all_positions.sort(key=lambda x: x['start']) | |
# Create segments | |
segments = [] | |
if all_positions and all_positions[0]['start'] > 0: | |
segments.append({ | |
'content': smiles[0:all_positions[0]['start']], | |
'bond_after': all_positions[0]['pattern'] if all_positions[0]['type'] != 'complex' else None, | |
'complex_after': all_positions[0]['pattern'] if all_positions[0]['type'] == 'complex' else None | |
}) | |
for i in range(len(all_positions)-1): | |
current = all_positions[i] | |
next_pos = all_positions[i+1] | |
if current['type'] == 'complex': | |
segments.append({ | |
'content': current['content'], | |
'bond_before': all_positions[i-1]['pattern'] if i > 0 and all_positions[i-1]['type'] != 'complex' else None, | |
'bond_after': next_pos['pattern'] if next_pos['type'] != 'complex' else None, | |
'complex_type': current['residue_type'] | |
}) | |
elif current['type'] == 'gly': | |
segments.append({ | |
'content': 'NCC(=O)', | |
'bond_before': all_positions[i-1]['pattern'] if i > 0 and all_positions[i-1]['type'] != 'complex' else None, | |
'bond_after': next_pos['pattern'] if next_pos['type'] != 'complex' else None | |
}) | |
else: | |
# Only create segment if there's content between this bond and next position | |
content = smiles[current['end']:next_pos['start']] | |
if content and next_pos['type'] != 'complex': | |
segments.append({ | |
'content': content, | |
'bond_before': current['pattern'], | |
'bond_after': next_pos['pattern'] if next_pos['type'] != 'complex' else None | |
}) | |
if all_positions and all_positions[-1]['end'] < len(smiles): | |
if all_positions[-1]['type'] == 'complex': | |
segments.append({ | |
'content': all_positions[-1]['content'], | |
'bond_before': all_positions[-2]['pattern'] if len(all_positions) > 1 and all_positions[-2]['type'] != 'complex' else None, | |
'complex_type': all_positions[-1]['residue_type'] | |
}) | |
else: | |
segments.append({ | |
'content': smiles[all_positions[-1]['end']:], | |
'bond_before': all_positions[-1]['pattern'] | |
}) | |
return segments | |
def clean_terminal_carboxyl(self, segment): | |
"""Remove C-terminal carboxyl only if it's the true terminus""" | |
content = segment['content'] | |
# Only clean if: | |
# 1. Contains C(=O)O | |
# 2. No bond_after exists (meaning it's the last segment) | |
# 3. C(=O)O is at the end of the content | |
if 'C(=O)O' in content and not segment.get('bond_after'): | |
print('recognized?') | |
# Remove C(=O)O pattern regardless of position | |
cleaned = re.sub(r'\(C\(=O\)O\)', '', content) | |
# Remove any leftover empty parentheses | |
cleaned = re.sub(r'\(\)', '', cleaned) | |
print(cleaned) | |
return cleaned | |
return content | |
def identify_residue(self, segment): | |
"""Identify residue with Pro reconstruction""" | |
# Only clean terminal carboxyl if this is the last segment | |
if 'complex_type' in segment: | |
return segment['complex_type'], [] | |
content = self.clean_terminal_carboxyl(segment) | |
mods = self.get_modifications(segment) | |
if content.startswith('COc1ccc(C(SC[C@@H]'): | |
print("DIRECT MATCH: Found Cmt at beginning") | |
return 'Cmt', mods | |
if '[C@@H]3CCCN3C2=O)(c2ccccc2)c2ccccc2)cc' in content: | |
print("DIRECT MATCH: Found Pro at end") | |
return 'Pro', mods | |
# Eal - Glu(OAll) | |
if 'CCC(=O)OCC=C' in content or 'CC(=O)OCC=C' in content or 'C=CCOC(=O)CC' in content: | |
return 'Eal', mods | |
# Proline (P) - flexible ring numbers | |
if any([ | |
# Check for any ring number in bond patterns | |
(segment.get('bond_after', '').startswith(f'N{n}C(=O)') and 'CCC' in content and | |
any(f'[C@@H]{n}' in content or f'[C@H]{n}' in content for n in '123456789')) | |
for n in '123456789' | |
]) or any([(segment.get('bond_before', '').startswith(f'C(=O)N{n}') and 'CCC' in content and | |
any(f'CCC{n}' for n in '123456789')) | |
for n in '123456789' | |
]) or any([ | |
# Check ending patterns with any ring number | |
(f'CCCN{n}' in content and content.endswith('=O') and | |
any(f'[C@@H]{n}' in content or f'[C@H]{n}' in content for n in '123456789')) | |
for n in '123456789' | |
]) or any([ | |
# Handle CCC[C@H]n patterns | |
(content == f'CCC[C@H]{n}' and segment.get('bond_before', '').startswith(f'C(=O)N{n}')) or | |
(content == f'CCC[C@@H]{n}' and segment.get('bond_before', '').startswith(f'C(=O)N{n}')) or | |
# N-terminal Pro with any ring number | |
(f'N{n}CCC[C@H]{n}' in content) or | |
(f'N{n}CCC[C@@H]{n}' in content) | |
for n in '123456789' | |
]): | |
return 'Pro', mods | |
# D-Proline (p) | |
if ('N1[C@H](CCC1)' in content): | |
return 'pro', mods | |
# Tryptophan (W) | |
if re.search(r'c[0-9]c\[nH\]c[0-9]ccccc[0-9][0-9]', content) and \ | |
'c[nH]c' in content.replace(' ', ''): | |
if '[C@H](CC' in content: # D-form | |
return 'trp', mods | |
return 'Trp', mods | |
# Lysine (K) - both patterns | |
if '[C@@H](CCCCN)' in content or '[C@H](CCCCN)' in content: | |
if '[C@H](CCCCN)' in content: # D-form | |
return 'lys', mods | |
return 'Lys', mods | |
# Arginine (R) - both patterns | |
if '[C@@H](CCCNC(=N)N)' in content or '[C@H](CCCNC(=N)N)' in content: | |
if '[C@H](CCCNC(=N)N)' in content: # D-form | |
return 'arg', mods | |
return 'Arg', mods | |
if content == 'C' and segment.get('bond_before') and segment.get('bond_after'): | |
# If it's surrounded by peptide bonds, it's almost certainly Gly | |
if ('C(=O)N' in segment['bond_before'] or 'NC(=O)' in segment['bond_before'] or 'N(C)C(=O)' in segment['bond_before']) and \ | |
('NC(=O)' in segment['bond_after'] or 'C(=O)N' in segment['bond_after'] or 'N(C)C(=O)' in segment['bond_after']): | |
return 'Gly', mods | |
# Leucine patterns (L/l) | |
if 'CC(C)C[C@H]' in content or 'CC(C)C[C@@H]' in content or '[C@@H](CC(C)C)' in content or '[C@H](CC(C)C)' in content or (('N[C@H](CCC(C)C)' in content or 'N[C@@H](CCC(C)C)' in content) and segment.get('bond_before') is None): | |
if '[C@H](CC(C)C)' in content or 'CC(C)C[C@H]' in content: # D-form | |
return 'leu', mods | |
return 'Leu', mods | |
# Threonine patterns (T/t) | |
if '[C@@H]([C@@H](C)O)' in content or '[C@H]([C@H](C)O)' in content or '[C@@H]([C@H](C)O)' in content or '[C@H]([C@@H](C)O)' in content: | |
# Check both stereochemistry patterns | |
if '[C@H]([C@@H](C)O)' in content: # D-form | |
return 'thr', mods | |
return 'Thr', mods | |
if re.search(r'\[C@H\]\(CCc\d+ccccc\d+\)', content) or re.search(r'\[C@@H\]\(CCc\d+ccccc\d+\)', content): | |
return 'Hph', mods | |
# Phenylalanine patterns (F/f) | |
if re.search(r'\[C@H\]\(Cc\d+ccccc\d+\)', content) or re.search(r'\[C@@H\]\(Cc\d+ccccc\d+\)', content): | |
if re.search(r'\[C@H\]\(Cc\d+ccccc\d+\)', content): # D-form | |
return 'phe', mods | |
return 'Phe', mods | |
if ('CC(C)[C@@H]' in content or 'CC(C)[C@H]' in content or | |
'[C@H](C(C)C)' in content or '[C@@H](C(C)C)' in content or | |
'C(C)C[C@H]' in content or 'C(C)C[C@@H]' in content): | |
# Make sure it's not leucine | |
if not any(p in content for p in ['CC(C)C[C@H]', 'CC(C)C[C@@H]', 'CCC(=O)']): | |
if '[C@H]' in content and not '[C@@H]' in content: # D-form | |
return 'val', mods | |
return 'Val', mods | |
# Isoleucine patterns (I/i) | |
if any([ | |
'CC[C@@H](C)' in content, '[C@@H](C)CC' in content, | |
'[C@@H](CC)C' in content, | |
'C(C)C[C@@H]' in content and 'CC(C)C' not in content | |
]): | |
if '[C@H]([C@@H](CC)C)' in content or '[C@H](CC)C' in content: # D-form | |
return 'ile', mods | |
elif '[C@H](C)CC' in content or '[C@H](CC)C' in content or 'CC[C@H](C)' in content: | |
return 'ile', mods | |
elif 'C(C)C[C@H]' in content and 'CC(C)C' not in content: | |
return 'ile', mods | |
return 'Ile', mods | |
# Alanine patterns (A/a) | |
if ('[C@H](C)' in content or '[C@@H](C)' in content): | |
if not any(p in content for p in ['C(C)C', 'COC', 'CN(', 'C(C)O', 'CC[C@H]', 'CC[C@@H]']): | |
if '[C@H](C)' in content: # D-form | |
return 'ala', mods | |
return 'Ala', mods | |
# Tyrosine patterns (Y/y) | |
if re.search(r'Cc[0-9]ccc\(O\)cc[0-9]', content): | |
if '[C@H](Cc1ccc(O)cc1)' in content: # D-form | |
return 'tyr', mods | |
return 'Tyr', mods | |
# Serine patterns (S/s) | |
if '[C@H](CO)' in content or '[C@@H](CO)' in content: | |
if not ('C(C)O' in content or 'COC' in content): | |
if '[C@H](CO)' in content: # D-form | |
return 'ser', mods | |
return 'Ser', mods | |
if 'CSSC' in content: | |
if re.search(r'\[C@@H\].*CSSC.*\[C@@H\]', content) or re.search(r'\[C@H\].*CSSC.*\[C@H\]', content): | |
if '[C@H]' in content and not '[C@@H]' in content: # D-form | |
return 'cys-cys', mods | |
return 'Cys-Cys', mods | |
if '[C@@H](N)CSSC' in content or '[C@H](N)CSSC' in content: | |
if '[C@H](N)CSSC' in content: # D-form | |
return 'cys-cys', mods | |
return 'Cys-Cys', mods | |
if 'CSSC[C@@H](C(=O)O)' in content or 'CSSC[C@H](C(=O)O)' in content: | |
if 'CSSC[C@H](C(=O)O)' in content: # D-form | |
return 'cys-cys', mods | |
return 'Cys-Cys', mods | |
# Cysteine patterns (C/c) | |
if '[C@H](CS)' in content or '[C@@H](CS)' in content: | |
if '[C@H](CS)' in content: # D-form | |
return 'cys', mods | |
return 'Cys', mods | |
# Methionine patterns (M/m) | |
if ('CCSC' in content) or ("CSCC" in content): | |
if '[C@H](CCSC)' in content: # D-form | |
return 'met', mods | |
elif '[C@H]' in content: | |
return 'met', mods | |
return 'Met', mods | |
# Glutamine patterns (Q/q) | |
if (content == '[C@@H](CC' or content == '[C@H](CC' and segment.get('bond_before')=='C(=O)N' and segment.get('bond_after')=='C(=O)N') or ('CCC(=O)N' in content) or ('CCC(N)=O' in content): | |
if '[C@H](CCC(=O)N)' in content: # D-form | |
return 'gln', mods | |
return 'Gln', mods | |
# Asparagine patterns (N/n) | |
if (content == '[C@@H](C' or content == '[C@H](C' and segment.get('bond_before')=='C(=O)N' and segment.get('bond_after')=='C(=O)N') or ('CC(=O)N' in content) or ('CCN(=O)' in content) or ('CC(N)=O' in content): | |
if '[C@H](CC(=O)N)' in content: # D-form | |
return 'asn', mods | |
return 'Asn', mods | |
# Glutamic acid patterns (E/e) | |
if ('CCC(=O)O' in content): | |
if '[C@H](CCC(=O)O)' in content: # D-form | |
return 'glu', mods | |
return 'Glu', mods | |
# Aspartic acid patterns (D/d) | |
if ('CC(=O)O' in content): | |
if '[C@H](CC(=O)O)' in content: # D-form | |
return 'asp', mods | |
return 'Asp', mods | |
if re.search(r'Cc\d+c\[nH\]cn\d+', content) or re.search(r'Cc\d+cnc\[nH\]\d+', content): | |
if '[C@H]' in content: # D-form | |
return 'his', mods | |
return 'His', mods | |
if 'C2(CCCC2)' in content or 'C1(CCCC1)' in content or re.search(r'C\d+\(CCCC\d+\)', content): | |
return 'Cyl', mods | |
if ('N[C@@H](CCCC)' in content or '[C@@H](CCCC)' in content or 'CCCC[C@@H]' in content or | |
'N[C@H](CCCC)' in content or '[C@H](CCCC)' in content) and 'CC(C)' not in content: | |
return 'Nle', mods | |
# Aib - alpha-aminoisobutyric acid (2-aminoisobutyric acid) | |
if 'C(C)(C)(N)' in content or 'C(C)(C)' in content or 'C(C)(C)' in content and ('C(=O)N' in segment['bond_before'] or 'NC(=O)' in segment['bond_before'] or 'N(C)C(=O)' in segment['bond_before']) and \ | |
('NC(=O)' in segment['bond_after'] or 'C(=O)N' in segment['bond_after'] or 'N(C)C(=O)' in segment['bond_after']): | |
return 'Aib', mods | |
# Dtg - Asp(OtBu)-(Dmb)Gly | |
if 'CC(=O)OC(C)(C)C' in content and 'CC1=C(C=C(C=C1)OC)OC' in content: | |
return 'Dtg', mods | |
# Kpg - Lys(palmitoyl-Glu-OtBu) | |
if 'CCCNC(=O)' in content and 'CCCCCCCCCCCC' in content: | |
return 'Kpg', mods | |
# Tpb - Thr(PO(OBzl)OH) | |
if re.search(r'\[C[@]?H\]\(C\)OP\(=O\)\(O\)', content) or 'OP(=O)(O)OCC' in content: | |
return 'Tpb', mods | |
return None, mods | |
def get_modifications(self, segment): | |
"""Get modifications based on bond types and segment content - fixed to avoid duplicates""" | |
mods = [] | |
# Check for N-methylation in any form, but only add it once | |
# Check both bonds and segment content for N-methylation patterns | |
if ((segment.get('bond_after') and | |
('N(C)' in segment['bond_after'] or segment['bond_after'].startswith('C(=O)N(C)'))) or | |
('N(C)C(=O)' in segment['content'] or 'N(C)C1=O' in segment['content']) or | |
(segment['content'].endswith('N(C)C(=O)') or segment['content'].endswith('N(C)C1=O'))): | |
mods.append('N-Me') | |
# Check for O-linked modifications | |
#if segment.get('bond_after') and 'OC(=O)' in segment['bond_after']: | |
#mods.append('O-linked') | |
return mods | |
def analyze_structure(self, smiles): | |
"""Main analysis function with preprocessing for complex residues""" | |
print("\nAnalyzing structure:", smiles) | |
# Pre-process to identify complex residues first | |
preprocessed_smiles, protected_residues = self.preprocess_complex_residues(smiles) | |
if protected_residues: | |
print(f"Identified {len(protected_residues)} complex residues during pre-processing") | |
for i, residue in enumerate(protected_residues): | |
print(f"Complex residue {i+1}: {residue['type']}") | |
# Check if it's cyclic | |
is_cyclic, peptide_cycles, aromatic_cycles = self.is_cyclic(smiles) | |
segments = self.split_on_bonds(preprocessed_smiles, protected_residues) | |
print("\nSegment Analysis:") | |
sequence = [] | |
for i, segment in enumerate(segments): | |
print(f"\nSegment {i}:") | |
print(f"Content: {segment.get('content', 'None')}") | |
print(f"Bond before: {segment.get('bond_before', 'None')}") | |
print(f"Bond after: {segment.get('bond_after', 'None')}") | |
residue, mods = self.identify_residue(segment) | |
if residue: | |
if mods: | |
sequence.append(f"{residue}({','.join(mods)})") | |
else: | |
sequence.append(residue) | |
print(f"Identified as: {residue}") | |
print(f"Modifications: {mods}") | |
else: | |
print(f"Warning: Could not identify residue in segment: {segment.get('content', 'None')}") | |
three_letter = '-'.join(sequence) | |
one_letter = ''.join(self.three_to_one.get(aa.split('(')[0], 'X') for aa in sequence) | |
if is_cyclic: | |
three_letter = f"cyclo({three_letter})" | |
one_letter = f"cyclo({one_letter})" | |
print(f"\nFinal sequence: {three_letter}") | |
print(f"One-letter code: {one_letter}") | |
print(f"Is cyclic: {is_cyclic}") | |
print(f"Peptide cycles: {peptide_cycles}") | |
print(f"Aromatic cycles: {aromatic_cycles}") | |
return { | |
'three_letter': three_letter, | |
'one_letter': one_letter, | |
'is_cyclic': is_cyclic, | |
'residues': sequence | |
} | |
def annotate_cyclic_structure(mol, sequence): | |
"""Create structure visualization""" | |
AllChem.Compute2DCoords(mol) | |
drawer = Draw.rdMolDraw2D.MolDraw2DCairo(2000, 2000) | |
# Draw molecule first | |
drawer.drawOptions().addAtomIndices = False | |
drawer.DrawMolecule(mol) | |
drawer.FinishDrawing() | |
# Convert to PIL Image | |
img = Image.open(BytesIO(drawer.GetDrawingText())) | |
draw = ImageDraw.Draw(img) | |
try: | |
small_font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 60) | |
except OSError: | |
try: | |
small_font = ImageFont.truetype("arial.ttf", 60) | |
except OSError: | |
print("Warning: TrueType fonts not available, using default font") | |
small_font = ImageFont.load_default() | |
# Header | |
seq_text = f"Sequence: {sequence}" | |
bbox = draw.textbbox((1000, 100), seq_text, font=small_font) | |
padding = 10 | |
draw.rectangle([bbox[0]-padding, bbox[1]-padding, | |
bbox[2]+padding, bbox[3]+padding], | |
fill='white', outline='white') | |
draw.text((1000, 100), seq_text, | |
font=small_font, fill='black', anchor="mm") | |
return img | |
def create_enhanced_linear_viz(sequence, smiles): | |
""""Linear visualization""" | |
analyzer = PeptideAnalyzer() | |
fig = plt.figure(figsize=(15, 10)) | |
gs = fig.add_gridspec(2, 1, height_ratios=[1, 2]) | |
ax_struct = fig.add_subplot(gs[0]) | |
ax_detail = fig.add_subplot(gs[1]) | |
if sequence.startswith('cyclo('): | |
residues = sequence[6:-1].split('-') | |
else: | |
residues = sequence.split('-') | |
segments = analyzer.split_on_bonds(smiles) | |
print(f"Number of residues: {len(residues)}") | |
print(f"Number of segments: {len(segments)}") | |
ax_struct.set_xlim(0, 10) | |
ax_struct.set_ylim(0, 2) | |
num_residues = len(residues) | |
spacing = 9.0 / (num_residues - 1) if num_residues > 1 else 9.0 | |
y_pos = 1.5 | |
for i in range(num_residues): | |
x_pos = 0.5 + i * spacing | |
rect = patches.Rectangle((x_pos-0.3, y_pos-0.2), 0.6, 0.4, | |
facecolor='lightblue', edgecolor='black') | |
ax_struct.add_patch(rect) | |
if i < num_residues - 1: | |
segment = segments[i] if i < len(segments) else None | |
if segment: | |
bond_type = 'ester' if 'O-linked' in segment.get('bond_after', '') else 'peptide' | |
is_n_methylated = 'N-Me' in segment.get('bond_after', '') | |
bond_color = 'red' if bond_type == 'ester' else 'black' | |
linestyle = '--' if bond_type == 'ester' else '-' | |
ax_struct.plot([x_pos+0.3, x_pos+spacing-0.3], [y_pos, y_pos], | |
color=bond_color, linestyle=linestyle, linewidth=2) | |
mid_x = x_pos + spacing/2 | |
bond_label = f"{bond_type}" | |
if is_n_methylated: | |
bond_label += "\n(N-Me)" | |
ax_struct.text(mid_x, y_pos+0.1, bond_label, | |
ha='center', va='bottom', fontsize=10, | |
color=bond_color) | |
ax_struct.text(x_pos, y_pos-0.5, residues[i], | |
ha='center', va='top', fontsize=14) | |
ax_detail.set_ylim(0, len(segments)+1) | |
ax_detail.set_xlim(0, 1) | |
segment_y = len(segments) | |
for i, segment in enumerate(segments): | |
y = segment_y - i | |
# Check if this is a bond or residue | |
residue, mods = analyzer.identify_residue(segment) | |
if residue: | |
text = f"Residue {i+1}: {residue}" | |
if mods: | |
text += f" ({', '.join(mods)})" | |
color = 'blue' | |
else: | |
# Must be a bond | |
text = f"Bond {i}: " | |
if 'O-linked' in segment.get('bond_after', ''): | |
text += "ester" | |
elif 'N-Me' in segment.get('bond_after', ''): | |
text += "peptide (N-methylated)" | |
else: | |
text += "peptide" | |
color = 'red' | |
ax_detail.text(0.05, y, text, fontsize=12, color=color) | |
ax_detail.text(0.5, y, f"SMILES: {segment.get('content', '')}", fontsize=10, color='gray') | |
# If cyclic, add connection indicator | |
if sequence.startswith('cyclo('): | |
ax_struct.annotate('', xy=(9.5, y_pos), xytext=(0.5, y_pos), | |
arrowprops=dict(arrowstyle='<->', color='red', lw=2)) | |
ax_struct.text(5, y_pos+0.3, 'Cyclic Connection', | |
ha='center', color='red', fontsize=14) | |
ax_struct.set_title("Peptide Structure Overview", pad=20) | |
ax_detail.set_title("Segment Analysis Breakdown", pad=20) | |
for ax in [ax_struct, ax_detail]: | |
ax.set_xticks([]) | |
ax.set_yticks([]) | |
ax.axis('off') | |
plt.tight_layout() | |
return fig | |
class PeptideStructureGenerator: | |
"""Generate 3D structures of peptides using different embedding methods""" | |
def prepare_molecule(smiles): | |
"""Prepare molecule with proper hydrogen handling""" | |
mol = Chem.MolFromSmiles(smiles, sanitize=False) | |
if mol is None: | |
raise ValueError("Failed to create molecule from SMILES") | |
for atom in mol.GetAtoms(): | |
atom.UpdatePropertyCache(strict=False) | |
# Sanitize with reduced requirements | |
Chem.SanitizeMol(mol, | |
sanitizeOps=Chem.SANITIZE_FINDRADICALS| | |
Chem.SANITIZE_KEKULIZE| | |
Chem.SANITIZE_SETAROMATICITY| | |
Chem.SANITIZE_SETCONJUGATION| | |
Chem.SANITIZE_SETHYBRIDIZATION| | |
Chem.SANITIZE_CLEANUPCHIRALITY) | |
mol = Chem.AddHs(mol) | |
return mol | |
def get_etkdg_params(attempt=0): | |
"""Get ETKDG parameters""" | |
params = AllChem.ETKDGv3() | |
params.randomSeed = -1 | |
params.maxIterations = 200 | |
params.numThreads = 4 # Reduced for web interface | |
params.useBasicKnowledge = True | |
params.enforceChirality = True | |
params.useExpTorsionAnglePrefs = True | |
params.useSmallRingTorsions = True | |
params.useMacrocycleTorsions = True | |
params.ETversion = 2 | |
params.pruneRmsThresh = -1 | |
params.embedRmsThresh = 0.5 | |
if attempt > 10: | |
params.bondLength = 1.5 + (attempt - 10) * 0.02 | |
params.useExpTorsionAnglePrefs = False | |
return params | |
def generate_structure_etkdg(self, smiles, max_attempts=20): | |
"""Generate 3D structure using ETKDG without UFF optimization""" | |
success = False | |
mol = None | |
for attempt in range(max_attempts): | |
try: | |
mol = self.prepare_molecule(smiles) | |
params = self.get_etkdg_params(attempt) | |
if AllChem.EmbedMolecule(mol, params) == 0: | |
success = True | |
break | |
except Exception as e: | |
continue | |
if not success: | |
raise ValueError("Failed to generate structure with ETKDG") | |
return mol | |
def generate_structure_uff(self, smiles, max_attempts=20): | |
"""Generate 3D structure using ETKDG followed by UFF optimization""" | |
best_mol = None | |
lowest_energy = float('inf') | |
for attempt in range(max_attempts): | |
try: | |
test_mol = self.prepare_molecule(smiles) | |
params = self.get_etkdg_params(attempt) | |
if AllChem.EmbedMolecule(test_mol, params) == 0: | |
res = AllChem.UFFOptimizeMolecule(test_mol, maxIters=2000, | |
vdwThresh=10.0, confId=0, | |
ignoreInterfragInteractions=True) | |
if res == 0: | |
ff = AllChem.UFFGetMoleculeForceField(test_mol) | |
if ff: | |
current_energy = ff.CalcEnergy() | |
if current_energy < lowest_energy: | |
lowest_energy = current_energy | |
best_mol = Chem.Mol(test_mol) | |
except Exception: | |
continue | |
if best_mol is None: | |
raise ValueError("Failed to generate optimized structure") | |
return best_mol | |
def mol_to_sdf_bytes(mol): | |
"""Convert RDKit molecule to SDF file bytes""" | |
sio = StringIO() | |
writer = Chem.SDWriter(sio) | |
writer.write(mol) | |
writer.close() | |
return sio.getvalue().encode('utf-8') | |
def process_input( | |
smiles_input=None, | |
file_obj=None, | |
show_linear=False, | |
show_segment_details=False, | |
generate_3d=False, | |
use_uff=False | |
): | |
"""Process input and create visualizations using PeptideAnalyzer""" | |
analyzer = PeptideAnalyzer() | |
temp_dir = tempfile.mkdtemp() if generate_3d else None | |
structure_files = [] | |
# Handle direct SMILES input | |
if smiles_input: | |
smiles = smiles_input.strip() | |
if not analyzer.is_peptide(smiles): | |
return "Error: Input SMILES does not appear to be a peptide structure.", None, None, [] | |
try: | |
mol = Chem.MolFromSmiles(smiles) | |
if mol is None: | |
return "Error: Invalid SMILES notation.", None, None, [] | |
if generate_3d: | |
generator = PeptideStructureGenerator() | |
try: | |
# Generate ETKDG structure | |
mol_etkdg = generator.generate_structure_etkdg(smiles) | |
etkdg_path = os.path.join(temp_dir, "structure_etkdg.sdf") | |
writer = Chem.SDWriter(etkdg_path) | |
writer.write(mol_etkdg) | |
writer.close() | |
structure_files.append(etkdg_path) | |
# Generate UFF structure if requested | |
if use_uff: | |
mol_uff = generator.generate_structure_uff(smiles) | |
uff_path = os.path.join(temp_dir, "structure_uff.sdf") | |
writer = Chem.SDWriter(uff_path) | |
writer.write(mol_uff) | |
writer.close() | |
structure_files.append(uff_path) | |
except Exception as e: | |
return f"Error generating 3D structures: {str(e)}", None, None, [] | |
segments = analyzer.split_on_bonds(smiles) | |
sequence_parts = [] | |
output_text = "" | |
# Only include segment analysis in output if requested | |
if show_segment_details: | |
output_text += "Segment Analysis:\n" | |
for i, segment in enumerate(segments): | |
output_text += f"\nSegment {i}:\n" | |
output_text += f"Content: {segment['content']}\n" | |
output_text += f"Bond before: {segment.get('bond_before', 'None')}\n" | |
output_text += f"Bond after: {segment.get('bond_after', 'None')}\n" | |
residue, mods = analyzer.identify_residue(segment) | |
if residue: | |
if mods: | |
sequence_parts.append(f"{residue}({','.join(mods)})") | |
else: | |
sequence_parts.append(residue) | |
output_text += f"Identified as: {residue}\n" | |
output_text += f"Modifications: {mods}\n" | |
else: | |
output_text += f"Warning: Could not identify residue in segment: {segment['content']}\n" | |
output_text += "\n" | |
else: | |
for segment in segments: | |
residue, mods = analyzer.identify_residue(segment) | |
if residue: | |
if mods: | |
sequence_parts.append(f"{residue}({','.join(mods)})") | |
else: | |
sequence_parts.append(residue) | |
is_cyclic, peptide_cycles, aromatic_cycles = analyzer.is_cyclic(smiles) | |
three_letter = '-'.join(sequence_parts) | |
one_letter = ''.join(analyzer.three_to_one.get(aa.split('(')[0], 'X') for aa in sequence_parts) | |
if is_cyclic: | |
three_letter = f"cyclo({three_letter})" | |
one_letter = f"cyclo({one_letter})" | |
img_cyclic = annotate_cyclic_structure(mol, three_letter) | |
# Create linear representation if requested | |
img_linear = None | |
if show_linear: | |
fig_linear = create_enhanced_linear_viz(three_letter, smiles) | |
buf = BytesIO() | |
fig_linear.savefig(buf, format='png', bbox_inches='tight', dpi=300) | |
buf.seek(0) | |
img_linear = Image.open(buf) | |
plt.close(fig_linear) | |
summary = "Summary:\n" | |
summary += f"Sequence: {three_letter}\n" | |
summary += f"One-letter code: {one_letter}\n" | |
summary += f"Is Cyclic: {'Yes' if is_cyclic else 'No'}\n" | |
#if is_cyclic: | |
#summary += f"Peptide Cycles: {', '.join(peptide_cycles)}\n" | |
#summary += f"Aromatic Cycles: {', '.join(aromatic_cycles)}\n" | |
if structure_files: | |
summary += "\n3D Structures Generated:\n" | |
for filepath in structure_files: | |
summary += f"- {os.path.basename(filepath)}\n" | |
return summary + output_text, img_cyclic, img_linear, structure_files if structure_files else [] | |
except Exception as e: | |
return f"Error processing SMILES: {str(e)}", None, None, [] | |
# Handle file input | |
if file_obj is not None: | |
try: | |
if hasattr(file_obj, 'name'): | |
with open(file_obj.name, 'r') as f: | |
content = f.read() | |
else: | |
content = file_obj.decode('utf-8') if isinstance(file_obj, bytes) else str(file_obj) | |
output_text = "" | |
for line in content.splitlines(): | |
smiles = line.strip() | |
if not smiles: | |
continue | |
if not analyzer.is_peptide(smiles): | |
output_text += f"Skipping non-peptide SMILES: {smiles}\n" | |
continue | |
try: | |
# Process the structure | |
result = analyzer.analyze_structure(smiles) | |
output_text += f"\nSummary for SMILES: {smiles}\n" | |
output_text += f"Sequence: {result['three_letter']}\n" | |
output_text += f"One-letter code: {result['one_letter']}\n" | |
output_text += f"Is Cyclic: {'Yes' if result['is_cyclic'] else 'No'}\n" | |
output_text += "-" * 50 + "\n" | |
except Exception as e: | |
output_text += f"Error processing SMILES: {smiles} - {str(e)}\n" | |
output_text += "-" * 50 + "\n" | |
return output_text, None, None, [] | |
except Exception as e: | |
return f"Error processing file: {str(e)}", None, None, [] | |
return ( | |
output_text or "No analysis done.", | |
img_cyclic if 'img_cyclic' in locals() else None, | |
img_linear if 'img_linear' in locals() else None, | |
structure_files if structure_files else [] | |
) | |
iface = gr.Interface( | |
fn=process_input, | |
inputs=[ | |
gr.Textbox( | |
label="Enter SMILES string", | |
placeholder="Enter SMILES notation of peptide...", | |
lines=2 | |
), | |
gr.File( | |
label="Or upload a text file with SMILES", | |
file_types=[".txt"] | |
), | |
gr.Checkbox( | |
label="Show linear representation", | |
value=False | |
), | |
gr.Checkbox( | |
label="Show show segmentation details", | |
value=False | |
), | |
gr.Checkbox( | |
label="Generate 3D structure (sdf file format)", | |
value=False | |
), | |
gr.Checkbox( | |
label="Use UFF optimization (may take long)", | |
value=False | |
) | |
], | |
outputs=[ | |
gr.Textbox( | |
label="Analysis Results", | |
lines=10 | |
), | |
gr.Image( | |
label="2D Structure with Annotations", | |
type="pil" | |
), | |
gr.Image( | |
label="Linear Representation", | |
type="pil" | |
), | |
gr.File( | |
label="3D Structure Files", | |
file_count="multiple" | |
) | |
], | |
title="Peptide Structure Analyzer and Visualizer", | |
description=""" | |
Analyze and visualize peptide structures from SMILES notation: | |
1. Validates if the input is a peptide structure | |
2. Determines if the peptide is cyclic | |
3. Parses the amino acid sequence | |
4. Creates 2D structure visualization with residue annotations | |
5. Optional linear representation | |
6. Optional 3D structure generation (ETKDG and UFF methods) | |
Input: Either enter a SMILES string directly or upload a text file containing SMILES strings | |
Example SMILES strings (copy and paste): | |
``` | |
CC(C)C[C@@H]1NC(=O)[C@@H](CC(C)C)N(C)C(=O)[C@@H](C)N(C)C(=O)[C@H](Cc2ccccc2)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H]2CCCN2C1=O | |
``` | |
``` | |
C(C)C[C@@H]1NC(=O)[C@@H]2CCCN2C(=O)[C@@H](CC(C)C)NC(=O)[C@@H](CC(C)C)N(C)C(=O)[C@H](C)NC(=O)[C@H](Cc2ccccc2)NC1=O | |
``` | |
``` | |
CC(C)C[C@H]1C(=O)N(C)[C@@H](Cc2ccccc2)C(=O)NCC(=O)N[C@H](C(=O)N2CCCCC2)CC(=O)N(C)CC(=O)N[C@@H]([C@@H](C)O)C(=O)N(C)[C@@H](C)C(=O)N[C@@H](COC(C)(C)C)C(=O)N(C)[C@@H](Cc2ccccc2)C(=O)N1C | |
``` | |
""", | |
flagging_mode="never" | |
) | |
if __name__ == "__main__": | |
Blocks.get_api_info = safe_get_api_info | |
iface.launch(share=True) | |