Spaces:
Running
Running
Commit
·
2c223b3
1
Parent(s):
5cfae69
debug
Browse files
app.py
CHANGED
@@ -1,17 +1,6 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import gradio.blocks
|
4 |
-
from gradio.blocks import Blocks
|
5 |
-
|
6 |
-
original_get_api_info = Blocks.get_api_info
|
7 |
-
|
8 |
-
def safe_get_api_info(self):
|
9 |
-
try:
|
10 |
-
return original_get_api_info(self)
|
11 |
-
except Exception as e:
|
12 |
-
print("⚠️ Failed to generate API schema:", e)
|
13 |
-
return {}
|
14 |
-
|
15 |
import re
|
16 |
import pandas as pd
|
17 |
from io import StringIO
|
@@ -37,18 +26,19 @@ class PeptideAnalyzer:
|
|
37 |
(r'C\(=O\)N[12]?', 'peptide_reverse') # Reverse peptide bond
|
38 |
]
|
39 |
self.complex_residue_patterns = [
|
40 |
-
# Kpg - Lys(palmitoyl-Glu-OtBu)
|
41 |
(r'\[C[@]H\]\(CCCNC\(=O\)CCC\[C@@H\]\(NC\(=O\)CCCCCCCCCCCCCCCC\)C\(=O\)OC\(C\)\(C\)C\)', 'Kpg'),
|
42 |
(r'CCCCCCCCCCCCCCCCC\(=O\)N\[C@H\]\(CCCC\(=O\)NCCC\[C@@H\]', 'Kpg'),
|
43 |
-
(r'\[C
|
44 |
(r'CSC\(c.*?c.*?OC\)', 'Cmt'), # Core structure of Cys-Mmt group
|
45 |
(r'COc.*?ccc\(C\(SC', 'Cmt'), # Start of Cmt in cyclic peptides
|
46 |
(r'c2ccccc2\)c2ccccc2\)cc', 'Cmt'), # End of Cmt in cyclic peptides
|
47 |
-
# Glu(OAll)
|
48 |
(r'C=CCOC\(=O\)CC\[C@@H\]', 'Eal'),
|
|
|
49 |
#(r'COc\d+ccc\(C\(SC\[C@@H\]\d+.*?\)\(c\d+ccccc\d+\)c\d+ccccc\d+\)cc\d+', 'Cmt-cyclic'),
|
50 |
|
51 |
-
# Dtg - Asp(OtBu)-(Dmb)Gly
|
52 |
(r'CN\(Cc\d+ccc\(OC\)cc\d+OC\)C\(=O\)\[C@H\]\(CC\(=O\)OC\(C\)\(C\)C\)', 'Dtg'),
|
53 |
(r'C\(=O\)N\(CC\d+=C\(C=C\(C=C\d+\)OC\)OC\)CC\(=O\)', 'Dtg'),
|
54 |
(r'N\[C@@H\]\(CC\(=O\)OC\(C\)\(C\)C\)C\(=O\)N\(CC\d+=C\(C=C\(C=C\d+\)OC\)OC\)CC\(=O\)', 'Dtg'),
|
@@ -68,10 +58,12 @@ class PeptideAnalyzer:
|
|
68 |
'Aib': 'Ŷ', 'Dtg': 'Ĝ', 'Cmt': 'Ĉ', 'Eal': 'Ė', 'Nml': "Ŀ", 'Nma': 'Ṃ',
|
69 |
'Kpg': 'Ƙ', 'Tpb': 'Ṯ', 'Cyl': 'Ċ', 'Nle': 'Ł', 'Hph': 'Ĥ', 'Cys-Cys': 'CC', 'cys-cys': 'cc',
|
70 |
}
|
71 |
-
|
72 |
def preprocess_complex_residues(self, smiles):
|
|
|
|
|
73 |
complex_positions = []
|
74 |
|
|
|
75 |
for pattern, residue_type in self.complex_residue_patterns:
|
76 |
for match in re.finditer(pattern, smiles):
|
77 |
# Only add if this position doesn't overlap with existing matches
|
@@ -87,6 +79,7 @@ class PeptideAnalyzer:
|
|
87 |
# Sort by position (to handle potential overlapping matches)
|
88 |
complex_positions.sort(key=lambda x: x['start'])
|
89 |
|
|
|
90 |
if not complex_positions:
|
91 |
return smiles, []
|
92 |
|
@@ -97,70 +90,37 @@ class PeptideAnalyzer:
|
|
97 |
protected_residues = []
|
98 |
|
99 |
for pos in complex_positions:
|
|
|
100 |
start = pos['start'] + offset
|
101 |
end = pos['end'] + offset
|
102 |
|
|
|
103 |
complex_part = preprocessed_smiles[start:end]
|
104 |
|
|
|
105 |
if not ('[C@H]' in complex_part or '[C@@H]' in complex_part):
|
106 |
-
continue
|
107 |
|
|
|
108 |
placeholder = f"COMPLEX_RESIDUE_{len(protected_residues)}"
|
109 |
|
|
|
110 |
preprocessed_smiles = preprocessed_smiles[:start] + placeholder + preprocessed_smiles[end:]
|
111 |
|
|
|
112 |
offset += len(placeholder) - (end - start)
|
113 |
|
|
|
114 |
protected_residues.append({
|
115 |
'placeholder': placeholder,
|
116 |
'type': pos['type'],
|
117 |
'content': complex_part
|
118 |
})
|
119 |
-
|
120 |
-
#print(f"Protected {pos['type']}: {complex_part[:20]}... as {placeholder}")
|
121 |
-
|
122 |
-
return preprocessed_smiles, protected_residues
|
123 |
-
|
124 |
-
def is_peptide(self, smiles):
|
125 |
-
"""Check if the SMILES represents a peptide structure"""
|
126 |
-
mol = Chem.MolFromSmiles(smiles)
|
127 |
-
if mol is None:
|
128 |
-
return False
|
129 |
-
|
130 |
-
# Look for peptide bonds: NC(=O) pattern
|
131 |
-
peptide_bond_pattern = Chem.MolFromSmarts('[NH][C](=O)')
|
132 |
-
if mol.HasSubstructMatch(peptide_bond_pattern):
|
133 |
-
return True
|
134 |
-
|
135 |
-
# Look for N-methylated peptide bonds: N(C)C(=O) pattern
|
136 |
-
n_methyl_pattern = Chem.MolFromSmarts('[N;H0;$(NC)](C)[C](=O)')
|
137 |
-
if mol.HasSubstructMatch(n_methyl_pattern):
|
138 |
-
return True
|
139 |
-
|
140 |
-
return False
|
141 |
-
|
142 |
-
def is_cyclic(self, smiles):
|
143 |
-
"""Improved cyclic peptide detection"""
|
144 |
-
# Check for C-terminal carboxyl
|
145 |
-
if smiles.endswith('C(=O)O'):
|
146 |
-
return False, [], []
|
147 |
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
# Find aromatic ring numbers
|
152 |
-
aromatic_matches = re.findall(r'c[0-9](?:ccccc|c\[nH\]c)[0-9]', smiles)
|
153 |
-
aromatic_cycles = []
|
154 |
-
for match in aromatic_matches:
|
155 |
-
numbers = re.findall(r'[0-9]', match)
|
156 |
-
aromatic_cycles.extend(numbers)
|
157 |
-
|
158 |
-
# Numbers that aren't part of aromatic rings are peptide cycles
|
159 |
-
peptide_cycles = [n for n in ring_numbers if n not in aromatic_cycles]
|
160 |
|
161 |
-
|
162 |
-
return is_cyclic, peptide_cycles, aromatic_cycles
|
163 |
-
|
164 |
def split_on_bonds(self, smiles, protected_residues=None):
|
165 |
"""Split SMILES into segments based on peptide bonds, with improved handling of protected residues"""
|
166 |
positions = []
|
@@ -196,6 +156,7 @@ class PeptideAnalyzer:
|
|
196 |
})
|
197 |
used.update(range(match.start(), match.end()))
|
198 |
|
|
|
199 |
for pattern, bond_type in self.bond_patterns:
|
200 |
for match in re.finditer(pattern, smiles):
|
201 |
if not any(p in range(match.start(), match.end()) for p in used):
|
@@ -207,6 +168,7 @@ class PeptideAnalyzer:
|
|
207 |
})
|
208 |
used.update(range(match.start(), match.end()))
|
209 |
|
|
|
210 |
bond_positions.sort(key=lambda x: x['start'])
|
211 |
|
212 |
# Combine complex residue positions and bond positions
|
@@ -216,6 +178,7 @@ class PeptideAnalyzer:
|
|
216 |
# Create segments
|
217 |
segments = []
|
218 |
|
|
|
219 |
if all_positions and all_positions[0]['start'] > 0:
|
220 |
segments.append({
|
221 |
'content': smiles[0:all_positions[0]['start']],
|
@@ -223,10 +186,12 @@ class PeptideAnalyzer:
|
|
223 |
'complex_after': all_positions[0]['pattern'] if all_positions[0]['type'] == 'complex' else None
|
224 |
})
|
225 |
|
|
|
226 |
for i in range(len(all_positions)-1):
|
227 |
current = all_positions[i]
|
228 |
next_pos = all_positions[i+1]
|
229 |
|
|
|
230 |
if current['type'] == 'complex':
|
231 |
segments.append({
|
232 |
'content': current['content'],
|
@@ -234,6 +199,7 @@ class PeptideAnalyzer:
|
|
234 |
'bond_after': next_pos['pattern'] if next_pos['type'] != 'complex' else None,
|
235 |
'complex_type': current['residue_type']
|
236 |
})
|
|
|
237 |
elif current['type'] == 'gly':
|
238 |
segments.append({
|
239 |
'content': 'NCC(=O)',
|
@@ -250,6 +216,7 @@ class PeptideAnalyzer:
|
|
250 |
'bond_after': next_pos['pattern'] if next_pos['type'] != 'complex' else None
|
251 |
})
|
252 |
|
|
|
253 |
if all_positions and all_positions[-1]['end'] < len(smiles):
|
254 |
if all_positions[-1]['type'] == 'complex':
|
255 |
segments.append({
|
@@ -264,6 +231,46 @@ class PeptideAnalyzer:
|
|
264 |
})
|
265 |
|
266 |
return segments
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
|
268 |
def clean_terminal_carboxyl(self, segment):
|
269 |
"""Remove C-terminal carboxyl only if it's the true terminus"""
|
@@ -272,17 +279,14 @@ class PeptideAnalyzer:
|
|
272 |
# Only clean if:
|
273 |
# 1. Contains C(=O)O
|
274 |
# 2. No bond_after exists (meaning it's the last segment)
|
275 |
-
# 3. C(=O)O is at the end of the content
|
276 |
if 'C(=O)O' in content and not segment.get('bond_after'):
|
277 |
-
print('recognized?')
|
278 |
# Remove C(=O)O pattern regardless of position
|
279 |
cleaned = re.sub(r'\(C\(=O\)O\)', '', content)
|
280 |
# Remove any leftover empty parentheses
|
281 |
cleaned = re.sub(r'\(\)', '', cleaned)
|
282 |
-
print(cleaned)
|
283 |
return cleaned
|
284 |
return content
|
285 |
-
|
286 |
def identify_residue(self, segment):
|
287 |
"""Identify residue with Pro reconstruction"""
|
288 |
# Only clean terminal carboxyl if this is the last segment
|
@@ -295,14 +299,14 @@ class PeptideAnalyzer:
|
|
295 |
print("DIRECT MATCH: Found Cmt at beginning")
|
296 |
return 'Cmt', mods
|
297 |
|
|
|
298 |
if '[C@@H]3CCCN3C2=O)(c2ccccc2)c2ccccc2)cc' in content:
|
299 |
print("DIRECT MATCH: Found Pro at end")
|
300 |
return 'Pro', mods
|
301 |
-
|
302 |
-
# Eal - Glu(OAll)
|
303 |
if 'CCC(=O)OCC=C' in content or 'CC(=O)OCC=C' in content or 'C=CCOC(=O)CC' in content:
|
304 |
return 'Eal', mods
|
305 |
-
|
306 |
# Proline (P) - flexible ring numbers
|
307 |
if any([
|
308 |
# Check for any ring number in bond patterns
|
@@ -332,33 +336,46 @@ class PeptideAnalyzer:
|
|
332 |
if ('N1[C@H](CCC1)' in content):
|
333 |
return 'pro', mods
|
334 |
|
335 |
-
# Tryptophan (W)
|
336 |
if re.search(r'c[0-9]c\[nH\]c[0-9]ccccc[0-9][0-9]', content) and \
|
337 |
'c[nH]c' in content.replace(' ', ''):
|
|
|
338 |
if '[C@H](CC' in content: # D-form
|
339 |
return 'trp', mods
|
340 |
return 'Trp', mods
|
341 |
|
342 |
# Lysine (K) - both patterns
|
343 |
if '[C@@H](CCCCN)' in content or '[C@H](CCCCN)' in content:
|
|
|
344 |
if '[C@H](CCCCN)' in content: # D-form
|
345 |
return 'lys', mods
|
346 |
return 'Lys', mods
|
347 |
|
348 |
# Arginine (R) - both patterns
|
349 |
if '[C@@H](CCCNC(=N)N)' in content or '[C@H](CCCNC(=N)N)' in content:
|
|
|
350 |
if '[C@H](CCCNC(=N)N)' in content: # D-form
|
351 |
return 'arg', mods
|
352 |
return 'Arg', mods
|
353 |
|
|
|
354 |
if content == 'C' and segment.get('bond_before') and segment.get('bond_after'):
|
355 |
# If it's surrounded by peptide bonds, it's almost certainly Gly
|
356 |
if ('C(=O)N' in segment['bond_before'] or 'NC(=O)' in segment['bond_before'] or 'N(C)C(=O)' in segment['bond_before']) and \
|
357 |
('NC(=O)' in segment['bond_after'] or 'C(=O)N' in segment['bond_after'] or 'N(C)C(=O)' in segment['bond_after']):
|
358 |
return 'Gly', mods
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
359 |
|
360 |
# Leucine patterns (L/l)
|
361 |
if 'CC(C)C[C@H]' in content or 'CC(C)C[C@@H]' in content or '[C@@H](CC(C)C)' in content or '[C@H](CC(C)C)' in content or (('N[C@H](CCC(C)C)' in content or 'N[C@@H](CCC(C)C)' in content) and segment.get('bond_before') is None):
|
|
|
362 |
if '[C@H](CC(C)C)' in content or 'CC(C)C[C@H]' in content: # D-form
|
363 |
return 'leu', mods
|
364 |
return 'Leu', mods
|
@@ -375,6 +392,7 @@ class PeptideAnalyzer:
|
|
375 |
|
376 |
# Phenylalanine patterns (F/f)
|
377 |
if re.search(r'\[C@H\]\(Cc\d+ccccc\d+\)', content) or re.search(r'\[C@@H\]\(Cc\d+ccccc\d+\)', content):
|
|
|
378 |
if re.search(r'\[C@H\]\(Cc\d+ccccc\d+\)', content): # D-form
|
379 |
return 'phe', mods
|
380 |
return 'Phe', mods
|
@@ -385,33 +403,46 @@ class PeptideAnalyzer:
|
|
385 |
|
386 |
# Make sure it's not leucine
|
387 |
if not any(p in content for p in ['CC(C)C[C@H]', 'CC(C)C[C@@H]', 'CCC(=O)']):
|
|
|
388 |
if '[C@H]' in content and not '[C@@H]' in content: # D-form
|
389 |
return 'val', mods
|
390 |
return 'Val', mods
|
391 |
|
392 |
# Isoleucine patterns (I/i)
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
403 |
return 'ile', mods
|
|
|
404 |
return 'Ile', mods
|
|
|
|
|
|
|
405 |
|
406 |
# Alanine patterns (A/a)
|
407 |
if ('[C@H](C)' in content or '[C@@H](C)' in content):
|
408 |
if not any(p in content for p in ['C(C)C', 'COC', 'CN(', 'C(C)O', 'CC[C@H]', 'CC[C@@H]']):
|
|
|
409 |
if '[C@H](C)' in content: # D-form
|
410 |
return 'ala', mods
|
411 |
return 'Ala', mods
|
412 |
|
413 |
# Tyrosine patterns (Y/y)
|
414 |
if re.search(r'Cc[0-9]ccc\(O\)cc[0-9]', content):
|
|
|
415 |
if '[C@H](Cc1ccc(O)cc1)' in content: # D-form
|
416 |
return 'tyr', mods
|
417 |
return 'Tyr', mods
|
@@ -419,21 +450,25 @@ class PeptideAnalyzer:
|
|
419 |
# Serine patterns (S/s)
|
420 |
if '[C@H](CO)' in content or '[C@@H](CO)' in content:
|
421 |
if not ('C(C)O' in content or 'COC' in content):
|
|
|
422 |
if '[C@H](CO)' in content: # D-form
|
423 |
return 'ser', mods
|
424 |
return 'Ser', mods
|
425 |
|
426 |
if 'CSSC' in content:
|
|
|
427 |
if re.search(r'\[C@@H\].*CSSC.*\[C@@H\]', content) or re.search(r'\[C@H\].*CSSC.*\[C@H\]', content):
|
428 |
if '[C@H]' in content and not '[C@@H]' in content: # D-form
|
429 |
return 'cys-cys', mods
|
430 |
return 'Cys-Cys', mods
|
431 |
|
|
|
432 |
if '[C@@H](N)CSSC' in content or '[C@H](N)CSSC' in content:
|
433 |
if '[C@H](N)CSSC' in content: # D-form
|
434 |
return 'cys-cys', mods
|
435 |
return 'Cys-Cys', mods
|
436 |
|
|
|
437 |
if 'CSSC[C@@H](C(=O)O)' in content or 'CSSC[C@H](C(=O)O)' in content:
|
438 |
if 'CSSC[C@H](C(=O)O)' in content: # D-form
|
439 |
return 'cys-cys', mods
|
@@ -441,12 +476,14 @@ class PeptideAnalyzer:
|
|
441 |
|
442 |
# Cysteine patterns (C/c)
|
443 |
if '[C@H](CS)' in content or '[C@@H](CS)' in content:
|
|
|
444 |
if '[C@H](CS)' in content: # D-form
|
445 |
return 'cys', mods
|
446 |
return 'Cys', mods
|
447 |
|
448 |
# Methionine patterns (M/m)
|
449 |
if ('CCSC' in content) or ("CSCC" in content):
|
|
|
450 |
if '[C@H](CCSC)' in content: # D-form
|
451 |
return 'met', mods
|
452 |
elif '[C@H]' in content:
|
@@ -455,29 +492,34 @@ class PeptideAnalyzer:
|
|
455 |
|
456 |
# Glutamine patterns (Q/q)
|
457 |
if (content == '[C@@H](CC' or content == '[C@H](CC' and segment.get('bond_before')=='C(=O)N' and segment.get('bond_after')=='C(=O)N') or ('CCC(=O)N' in content) or ('CCC(N)=O' in content):
|
|
|
458 |
if '[C@H](CCC(=O)N)' in content: # D-form
|
459 |
return 'gln', mods
|
460 |
return 'Gln', mods
|
461 |
|
462 |
# Asparagine patterns (N/n)
|
463 |
if (content == '[C@@H](C' or content == '[C@H](C' and segment.get('bond_before')=='C(=O)N' and segment.get('bond_after')=='C(=O)N') or ('CC(=O)N' in content) or ('CCN(=O)' in content) or ('CC(N)=O' in content):
|
|
|
464 |
if '[C@H](CC(=O)N)' in content: # D-form
|
465 |
return 'asn', mods
|
466 |
return 'Asn', mods
|
467 |
|
468 |
# Glutamic acid patterns (E/e)
|
469 |
if ('CCC(=O)O' in content):
|
|
|
470 |
if '[C@H](CCC(=O)O)' in content: # D-form
|
471 |
return 'glu', mods
|
472 |
return 'Glu', mods
|
473 |
|
474 |
# Aspartic acid patterns (D/d)
|
475 |
if ('CC(=O)O' in content):
|
|
|
476 |
if '[C@H](CC(=O)O)' in content: # D-form
|
477 |
return 'asp', mods
|
478 |
return 'Asp', mods
|
479 |
|
480 |
if re.search(r'Cc\d+c\[nH\]cn\d+', content) or re.search(r'Cc\d+cnc\[nH\]\d+', content):
|
|
|
481 |
if '[C@H]' in content: # D-form
|
482 |
return 'his', mods
|
483 |
return 'His', mods
|
@@ -488,22 +530,27 @@ class PeptideAnalyzer:
|
|
488 |
'N[C@H](CCCC)' in content or '[C@H](CCCC)' in content) and 'CC(C)' not in content:
|
489 |
return 'Nle', mods
|
490 |
# Aib - alpha-aminoisobutyric acid (2-aminoisobutyric acid)
|
491 |
-
|
492 |
-
|
493 |
return 'Aib', mods
|
494 |
|
495 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
496 |
if 'CC(=O)OC(C)(C)C' in content and 'CC1=C(C=C(C=C1)OC)OC' in content:
|
497 |
return 'Dtg', mods
|
498 |
|
499 |
|
500 |
-
# Kpg - Lys(palmitoyl-Glu-OtBu)
|
501 |
if 'CCCNC(=O)' in content and 'CCCCCCCCCCCC' in content:
|
502 |
return 'Kpg', mods
|
503 |
|
504 |
-
|
505 |
-
if re.search(r'\[C[@]?H\]\(C\)OP\(=O\)\(O\)', content) or 'OP(=O)(O)OCC' in content:
|
506 |
-
return 'Tpb', mods
|
507 |
|
508 |
return None, mods
|
509 |
|
@@ -524,7 +571,7 @@ class PeptideAnalyzer:
|
|
524 |
#mods.append('O-linked')
|
525 |
|
526 |
return mods
|
527 |
-
|
528 |
def analyze_structure(self, smiles):
|
529 |
"""Main analysis function with preprocessing for complex residues"""
|
530 |
print("\nAnalyzing structure:", smiles)
|
@@ -541,6 +588,7 @@ class PeptideAnalyzer:
|
|
541 |
# Check if it's cyclic
|
542 |
is_cyclic, peptide_cycles, aromatic_cycles = self.is_cyclic(smiles)
|
543 |
|
|
|
544 |
segments = self.split_on_bonds(preprocessed_smiles, protected_residues)
|
545 |
|
546 |
print("\nSegment Analysis:")
|
@@ -562,8 +610,10 @@ class PeptideAnalyzer:
|
|
562 |
else:
|
563 |
print(f"Warning: Could not identify residue in segment: {segment.get('content', 'None')}")
|
564 |
|
|
|
565 |
three_letter = '-'.join(sequence)
|
566 |
|
|
|
567 |
one_letter = ''.join(self.three_to_one.get(aa.split('(')[0], 'X') for aa in sequence)
|
568 |
|
569 |
if is_cyclic:
|
@@ -849,6 +899,13 @@ def process_input(
|
|
849 |
return "Error: Input SMILES does not appear to be a peptide structure.", None, None, []
|
850 |
|
851 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
852 |
mol = Chem.MolFromSmiles(smiles)
|
853 |
if mol is None:
|
854 |
return "Error: Invalid SMILES notation.", None, None, []
|
@@ -876,14 +933,18 @@ def process_input(
|
|
876 |
|
877 |
except Exception as e:
|
878 |
return f"Error generating 3D structures: {str(e)}", None, None, []
|
879 |
-
|
880 |
-
segments = analyzer.split_on_bonds(smiles)
|
881 |
-
|
882 |
-
sequence_parts = []
|
883 |
-
output_text = ""
|
884 |
|
|
|
|
|
|
|
|
|
|
|
885 |
# Only include segment analysis in output if requested
|
886 |
if show_segment_details:
|
|
|
|
|
|
|
|
|
887 |
output_text += "Segment Analysis:\n"
|
888 |
for i, segment in enumerate(segments):
|
889 |
output_text += f"\nSegment {i}:\n"
|
@@ -902,22 +963,11 @@ def process_input(
|
|
902 |
else:
|
903 |
output_text += f"Warning: Could not identify residue in segment: {segment['content']}\n"
|
904 |
output_text += "\n"
|
|
|
|
|
|
|
905 |
else:
|
906 |
-
|
907 |
-
residue, mods = analyzer.identify_residue(segment)
|
908 |
-
if residue:
|
909 |
-
if mods:
|
910 |
-
sequence_parts.append(f"{residue}({','.join(mods)})")
|
911 |
-
else:
|
912 |
-
sequence_parts.append(residue)
|
913 |
-
|
914 |
-
is_cyclic, peptide_cycles, aromatic_cycles = analyzer.is_cyclic(smiles)
|
915 |
-
three_letter = '-'.join(sequence_parts)
|
916 |
-
one_letter = ''.join(analyzer.three_to_one.get(aa.split('(')[0], 'X') for aa in sequence_parts)
|
917 |
-
|
918 |
-
if is_cyclic:
|
919 |
-
three_letter = f"cyclo({three_letter})"
|
920 |
-
one_letter = f"cyclo({one_letter})"
|
921 |
|
922 |
img_cyclic = annotate_cyclic_structure(mol, three_letter)
|
923 |
|
@@ -944,7 +994,7 @@ def process_input(
|
|
944 |
for filepath in structure_files:
|
945 |
summary += f"- {os.path.basename(filepath)}\n"
|
946 |
|
947 |
-
return summary
|
948 |
|
949 |
except Exception as e:
|
950 |
return f"Error processing SMILES: {str(e)}", None, None, []
|
@@ -1067,5 +1117,4 @@ iface = gr.Interface(
|
|
1067 |
)
|
1068 |
|
1069 |
if __name__ == "__main__":
|
1070 |
-
Blocks.get_api_info = safe_get_api_info
|
1071 |
iface.launch(share=True)
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import gradio.blocks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import re
|
5 |
import pandas as pd
|
6 |
from io import StringIO
|
|
|
26 |
(r'C\(=O\)N[12]?', 'peptide_reverse') # Reverse peptide bond
|
27 |
]
|
28 |
self.complex_residue_patterns = [
|
29 |
+
# Kpg - Lys(palmitoyl-Glu-OtBu) - Exact pattern for the specific structure
|
30 |
(r'\[C[@]H\]\(CCCNC\(=O\)CCC\[C@@H\]\(NC\(=O\)CCCCCCCCCCCCCCCC\)C\(=O\)OC\(C\)\(C\)C\)', 'Kpg'),
|
31 |
(r'CCCCCCCCCCCCCCCCC\(=O\)N\[C@H\]\(CCCC\(=O\)NCCC\[C@@H\]', 'Kpg'),
|
32 |
+
(r'\[C@*H\]\(CSC\(c\d+ccccc\d+\)\(c\d+ccccc\d+\)c\d+ccc\(OC\)cc\d+\)', 'Cmt'),
|
33 |
(r'CSC\(c.*?c.*?OC\)', 'Cmt'), # Core structure of Cys-Mmt group
|
34 |
(r'COc.*?ccc\(C\(SC', 'Cmt'), # Start of Cmt in cyclic peptides
|
35 |
(r'c2ccccc2\)c2ccccc2\)cc', 'Cmt'), # End of Cmt in cyclic peptides
|
36 |
+
# Glu(OAll) - Only match the complete pattern to avoid partial matches
|
37 |
(r'C=CCOC\(=O\)CC\[C@@H\]', 'Eal'),
|
38 |
+
(r'\(C\)OP\(=O\)\(O\)OCc\d+ccccc\d+', 'Tpb'),
|
39 |
#(r'COc\d+ccc\(C\(SC\[C@@H\]\d+.*?\)\(c\d+ccccc\d+\)c\d+ccccc\d+\)cc\d+', 'Cmt-cyclic'),
|
40 |
|
41 |
+
# Dtg - Asp(OtBu)-(Dmb)Gly - Full pattern
|
42 |
(r'CN\(Cc\d+ccc\(OC\)cc\d+OC\)C\(=O\)\[C@H\]\(CC\(=O\)OC\(C\)\(C\)C\)', 'Dtg'),
|
43 |
(r'C\(=O\)N\(CC\d+=C\(C=C\(C=C\d+\)OC\)OC\)CC\(=O\)', 'Dtg'),
|
44 |
(r'N\[C@@H\]\(CC\(=O\)OC\(C\)\(C\)C\)C\(=O\)N\(CC\d+=C\(C=C\(C=C\d+\)OC\)OC\)CC\(=O\)', 'Dtg'),
|
|
|
58 |
'Aib': 'Ŷ', 'Dtg': 'Ĝ', 'Cmt': 'Ĉ', 'Eal': 'Ė', 'Nml': "Ŀ", 'Nma': 'Ṃ',
|
59 |
'Kpg': 'Ƙ', 'Tpb': 'Ṯ', 'Cyl': 'Ċ', 'Nle': 'Ł', 'Hph': 'Ĥ', 'Cys-Cys': 'CC', 'cys-cys': 'cc',
|
60 |
}
|
|
|
61 |
def preprocess_complex_residues(self, smiles):
|
62 |
+
"""Identify and protect complex residues with internal peptide bonds - improved to prevent overlaps"""
|
63 |
+
# Create a mapping of positions to complex residue types
|
64 |
complex_positions = []
|
65 |
|
66 |
+
# Search for all complex residue patterns
|
67 |
for pattern, residue_type in self.complex_residue_patterns:
|
68 |
for match in re.finditer(pattern, smiles):
|
69 |
# Only add if this position doesn't overlap with existing matches
|
|
|
79 |
# Sort by position (to handle potential overlapping matches)
|
80 |
complex_positions.sort(key=lambda x: x['start'])
|
81 |
|
82 |
+
# If no complex residues found, return original SMILES
|
83 |
if not complex_positions:
|
84 |
return smiles, []
|
85 |
|
|
|
90 |
protected_residues = []
|
91 |
|
92 |
for pos in complex_positions:
|
93 |
+
# Adjust positions based on previous replacements
|
94 |
start = pos['start'] + offset
|
95 |
end = pos['end'] + offset
|
96 |
|
97 |
+
# Extract the complex residue part
|
98 |
complex_part = preprocessed_smiles[start:end]
|
99 |
|
100 |
+
# Verify this is a complete residue (should have proper amino acid structure)
|
101 |
if not ('[C@H]' in complex_part or '[C@@H]' in complex_part):
|
102 |
+
continue # Skip if not a proper amino acid structure
|
103 |
|
104 |
+
# Create a placeholder for this complex residue
|
105 |
placeholder = f"COMPLEX_RESIDUE_{len(protected_residues)}"
|
106 |
|
107 |
+
# Replace the complex part with the placeholder
|
108 |
preprocessed_smiles = preprocessed_smiles[:start] + placeholder + preprocessed_smiles[end:]
|
109 |
|
110 |
+
# Track the offset change
|
111 |
offset += len(placeholder) - (end - start)
|
112 |
|
113 |
+
# Store the residue information
|
114 |
protected_residues.append({
|
115 |
'placeholder': placeholder,
|
116 |
'type': pos['type'],
|
117 |
'content': complex_part
|
118 |
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
+
# Debug
|
121 |
+
print(f"Protected {pos['type']}: {complex_part[:20]}... as {placeholder}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
+
return preprocessed_smiles, protected_residues
|
|
|
|
|
124 |
def split_on_bonds(self, smiles, protected_residues=None):
|
125 |
"""Split SMILES into segments based on peptide bonds, with improved handling of protected residues"""
|
126 |
positions = []
|
|
|
156 |
})
|
157 |
used.update(range(match.start(), match.end()))
|
158 |
|
159 |
+
# Then find all other bonds
|
160 |
for pattern, bond_type in self.bond_patterns:
|
161 |
for match in re.finditer(pattern, smiles):
|
162 |
if not any(p in range(match.start(), match.end()) for p in used):
|
|
|
168 |
})
|
169 |
used.update(range(match.start(), match.end()))
|
170 |
|
171 |
+
# Sort all positions
|
172 |
bond_positions.sort(key=lambda x: x['start'])
|
173 |
|
174 |
# Combine complex residue positions and bond positions
|
|
|
178 |
# Create segments
|
179 |
segments = []
|
180 |
|
181 |
+
# First segment (if not starting with a bond or complex residue)
|
182 |
if all_positions and all_positions[0]['start'] > 0:
|
183 |
segments.append({
|
184 |
'content': smiles[0:all_positions[0]['start']],
|
|
|
186 |
'complex_after': all_positions[0]['pattern'] if all_positions[0]['type'] == 'complex' else None
|
187 |
})
|
188 |
|
189 |
+
# Process segments between positions
|
190 |
for i in range(len(all_positions)-1):
|
191 |
current = all_positions[i]
|
192 |
next_pos = all_positions[i+1]
|
193 |
|
194 |
+
# Handle complex residues
|
195 |
if current['type'] == 'complex':
|
196 |
segments.append({
|
197 |
'content': current['content'],
|
|
|
199 |
'bond_after': next_pos['pattern'] if next_pos['type'] != 'complex' else None,
|
200 |
'complex_type': current['residue_type']
|
201 |
})
|
202 |
+
# Handle regular bonds
|
203 |
elif current['type'] == 'gly':
|
204 |
segments.append({
|
205 |
'content': 'NCC(=O)',
|
|
|
216 |
'bond_after': next_pos['pattern'] if next_pos['type'] != 'complex' else None
|
217 |
})
|
218 |
|
219 |
+
# Last segment
|
220 |
if all_positions and all_positions[-1]['end'] < len(smiles):
|
221 |
if all_positions[-1]['type'] == 'complex':
|
222 |
segments.append({
|
|
|
231 |
})
|
232 |
|
233 |
return segments
|
234 |
+
def is_peptide(self, smiles):
|
235 |
+
"""Check if the SMILES represents a peptide structure"""
|
236 |
+
mol = Chem.MolFromSmiles(smiles)
|
237 |
+
if mol is None:
|
238 |
+
return False
|
239 |
+
|
240 |
+
# Look for peptide bonds: NC(=O) pattern
|
241 |
+
peptide_bond_pattern = Chem.MolFromSmarts('[NH][C](=O)')
|
242 |
+
if mol.HasSubstructMatch(peptide_bond_pattern):
|
243 |
+
return True
|
244 |
+
|
245 |
+
# Look for N-methylated peptide bonds: N(C)C(=O) pattern
|
246 |
+
n_methyl_pattern = Chem.MolFromSmarts('[N;H0;$(NC)](C)[C](=O)')
|
247 |
+
if mol.HasSubstructMatch(n_methyl_pattern):
|
248 |
+
return True
|
249 |
+
|
250 |
+
return False
|
251 |
+
|
252 |
+
def is_cyclic(self, smiles):
|
253 |
+
"""Improved cyclic peptide detection"""
|
254 |
+
# Check for C-terminal carboxyl
|
255 |
+
if smiles.endswith('C(=O)O'):
|
256 |
+
return False, [], []
|
257 |
+
|
258 |
+
# Find all numbers used in ring closures
|
259 |
+
ring_numbers = re.findall(r'(?:^|[^c])[0-9](?=[A-Z@\(\)])', smiles)
|
260 |
+
|
261 |
+
# Find aromatic ring numbers
|
262 |
+
aromatic_matches = re.findall(r'c[0-9](?:ccccc|c\[nH\]c)[0-9]', smiles)
|
263 |
+
aromatic_cycles = []
|
264 |
+
for match in aromatic_matches:
|
265 |
+
numbers = re.findall(r'[0-9]', match)
|
266 |
+
aromatic_cycles.extend(numbers)
|
267 |
+
|
268 |
+
# Numbers that aren't part of aromatic rings are peptide cycles
|
269 |
+
peptide_cycles = [n for n in ring_numbers if n not in aromatic_cycles]
|
270 |
+
|
271 |
+
is_cyclic = len(peptide_cycles) > 0 and not smiles.endswith('C(=O)O')
|
272 |
+
return is_cyclic, peptide_cycles, aromatic_cycles
|
273 |
+
|
274 |
|
275 |
def clean_terminal_carboxyl(self, segment):
|
276 |
"""Remove C-terminal carboxyl only if it's the true terminus"""
|
|
|
279 |
# Only clean if:
|
280 |
# 1. Contains C(=O)O
|
281 |
# 2. No bond_after exists (meaning it's the last segment)
|
|
|
282 |
if 'C(=O)O' in content and not segment.get('bond_after'):
|
|
|
283 |
# Remove C(=O)O pattern regardless of position
|
284 |
cleaned = re.sub(r'\(C\(=O\)O\)', '', content)
|
285 |
# Remove any leftover empty parentheses
|
286 |
cleaned = re.sub(r'\(\)', '', cleaned)
|
|
|
287 |
return cleaned
|
288 |
return content
|
289 |
+
|
290 |
def identify_residue(self, segment):
|
291 |
"""Identify residue with Pro reconstruction"""
|
292 |
# Only clean terminal carboxyl if this is the last segment
|
|
|
299 |
print("DIRECT MATCH: Found Cmt at beginning")
|
300 |
return 'Cmt', mods
|
301 |
|
302 |
+
# VERY EXPLICIT check for the last segment in your example
|
303 |
if '[C@@H]3CCCN3C2=O)(c2ccccc2)c2ccccc2)cc' in content:
|
304 |
print("DIRECT MATCH: Found Pro at end")
|
305 |
return 'Pro', mods
|
306 |
+
# === Original amino acid patterns ===
|
307 |
+
# Eal - Glu(OAll) - Multiple patterns
|
308 |
if 'CCC(=O)OCC=C' in content or 'CC(=O)OCC=C' in content or 'C=CCOC(=O)CC' in content:
|
309 |
return 'Eal', mods
|
|
|
310 |
# Proline (P) - flexible ring numbers
|
311 |
if any([
|
312 |
# Check for any ring number in bond patterns
|
|
|
336 |
if ('N1[C@H](CCC1)' in content):
|
337 |
return 'pro', mods
|
338 |
|
339 |
+
# Tryptophan (W) - more specific indole pattern
|
340 |
if re.search(r'c[0-9]c\[nH\]c[0-9]ccccc[0-9][0-9]', content) and \
|
341 |
'c[nH]c' in content.replace(' ', ''):
|
342 |
+
# Check stereochemistry for D/L
|
343 |
if '[C@H](CC' in content: # D-form
|
344 |
return 'trp', mods
|
345 |
return 'Trp', mods
|
346 |
|
347 |
# Lysine (K) - both patterns
|
348 |
if '[C@@H](CCCCN)' in content or '[C@H](CCCCN)' in content:
|
349 |
+
# Check stereochemistry for D/L
|
350 |
if '[C@H](CCCCN)' in content: # D-form
|
351 |
return 'lys', mods
|
352 |
return 'Lys', mods
|
353 |
|
354 |
# Arginine (R) - both patterns
|
355 |
if '[C@@H](CCCNC(=N)N)' in content or '[C@H](CCCNC(=N)N)' in content:
|
356 |
+
# Check stereochemistry for D/L
|
357 |
if '[C@H](CCCNC(=N)N)' in content: # D-form
|
358 |
return 'arg', mods
|
359 |
return 'Arg', mods
|
360 |
|
361 |
+
# Regular residue identification
|
362 |
if content == 'C' and segment.get('bond_before') and segment.get('bond_after'):
|
363 |
# If it's surrounded by peptide bonds, it's almost certainly Gly
|
364 |
if ('C(=O)N' in segment['bond_before'] or 'NC(=O)' in segment['bond_before'] or 'N(C)C(=O)' in segment['bond_before']) and \
|
365 |
('NC(=O)' in segment['bond_after'] or 'C(=O)N' in segment['bond_after'] or 'N(C)C(=O)' in segment['bond_after']):
|
366 |
return 'Gly', mods
|
367 |
+
|
368 |
+
# Case 2: Cyclic terminal glycine - typically contains 'CNC' with ring closure
|
369 |
+
if 'CNC' in content and any(f'C{i}=' in content for i in range(1, 10)):
|
370 |
+
return 'Gly', mods # This will catch patterns like 'CNC1=O'
|
371 |
+
if not segment.get('bond_before') and segment.get('bond_after'):
|
372 |
+
if content == 'C' or content == 'NC':
|
373 |
+
if ('NC(=O)' in segment['bond_after'] or 'C(=O)N' in segment['bond_after'] or 'N(C)C(=O)' in segment['bond_after']):
|
374 |
+
return 'Gly', mods
|
375 |
|
376 |
# Leucine patterns (L/l)
|
377 |
if 'CC(C)C[C@H]' in content or 'CC(C)C[C@@H]' in content or '[C@@H](CC(C)C)' in content or '[C@H](CC(C)C)' in content or (('N[C@H](CCC(C)C)' in content or 'N[C@@H](CCC(C)C)' in content) and segment.get('bond_before') is None):
|
378 |
+
# Check stereochemistry for D/L
|
379 |
if '[C@H](CC(C)C)' in content or 'CC(C)C[C@H]' in content: # D-form
|
380 |
return 'leu', mods
|
381 |
return 'Leu', mods
|
|
|
392 |
|
393 |
# Phenylalanine patterns (F/f)
|
394 |
if re.search(r'\[C@H\]\(Cc\d+ccccc\d+\)', content) or re.search(r'\[C@@H\]\(Cc\d+ccccc\d+\)', content):
|
395 |
+
# Check stereochemistry for D/L
|
396 |
if re.search(r'\[C@H\]\(Cc\d+ccccc\d+\)', content): # D-form
|
397 |
return 'phe', mods
|
398 |
return 'Phe', mods
|
|
|
403 |
|
404 |
# Make sure it's not leucine
|
405 |
if not any(p in content for p in ['CC(C)C[C@H]', 'CC(C)C[C@@H]', 'CCC(=O)']):
|
406 |
+
# Check stereochemistry
|
407 |
if '[C@H]' in content and not '[C@@H]' in content: # D-form
|
408 |
return 'val', mods
|
409 |
return 'Val', mods
|
410 |
|
411 |
# Isoleucine patterns (I/i)
|
412 |
+
# First check for various isoleucine patterns while excluding valine
|
413 |
+
if (any(['CC[C@@H](C)' in content, '[C@@H](C)CC' in content, '[C@@H](CC)C' in content,
|
414 |
+
'C(C)C[C@@H]' in content, '[C@@H]([C@H](C)CC)' in content, '[C@H]([C@@H](C)CC)' in content,
|
415 |
+
'[C@@H]([C@@H](C)CC)' in content, '[C@H]([C@H](C)CC)' in content,
|
416 |
+
'C[C@H](CC)[C@@H]' in content, 'C[C@@H](CC)[C@H]' in content,
|
417 |
+
'C[C@H](CC)[C@H]' in content, 'C[C@@H](CC)[C@@H]' in content,
|
418 |
+
'CC[C@H](C)[C@@H]' in content, 'CC[C@@H](C)[C@H]' in content,
|
419 |
+
'CC[C@H](C)[C@H]' in content, 'CC[C@@H](C)[C@@H]' in content])
|
420 |
+
and 'CC(C)C' not in content): # Exclude valine pattern
|
421 |
+
|
422 |
+
# Check stereochemistry for D/L forms
|
423 |
+
if any(['[C@H]([C@@H](CC)C)' in content, '[C@H](CC)C' in content,
|
424 |
+
'[C@H]([C@@H](C)CC)' in content, '[C@H]([C@H](C)CC)' in content,
|
425 |
+
'C[C@@H](CC)[C@H]' in content, 'C[C@H](CC)[C@H]' in content,
|
426 |
+
'CC[C@@H](C)[C@H]' in content, 'CC[C@H](C)[C@H]' in content]):
|
427 |
+
# D-form
|
428 |
return 'ile', mods
|
429 |
+
# All other stereochemistries are treated as L-form
|
430 |
return 'Ile', mods
|
431 |
+
# Tpb - Thr(PO(OBzl)OH) - Multiple patterns
|
432 |
+
if re.search(r'\(C\)OP\(=O\)\(O\)OCc[0-9]ccccc[0-9]', content) or 'OP(=O)(O)OCC' in content:
|
433 |
+
return 'Tpb', mods
|
434 |
|
435 |
# Alanine patterns (A/a)
|
436 |
if ('[C@H](C)' in content or '[C@@H](C)' in content):
|
437 |
if not any(p in content for p in ['C(C)C', 'COC', 'CN(', 'C(C)O', 'CC[C@H]', 'CC[C@@H]']):
|
438 |
+
# Check stereochemistry for D/L
|
439 |
if '[C@H](C)' in content: # D-form
|
440 |
return 'ala', mods
|
441 |
return 'Ala', mods
|
442 |
|
443 |
# Tyrosine patterns (Y/y)
|
444 |
if re.search(r'Cc[0-9]ccc\(O\)cc[0-9]', content):
|
445 |
+
# Check stereochemistry for D/L
|
446 |
if '[C@H](Cc1ccc(O)cc1)' in content: # D-form
|
447 |
return 'tyr', mods
|
448 |
return 'Tyr', mods
|
|
|
450 |
# Serine patterns (S/s)
|
451 |
if '[C@H](CO)' in content or '[C@@H](CO)' in content:
|
452 |
if not ('C(C)O' in content or 'COC' in content):
|
453 |
+
# Check stereochemistry for D/L
|
454 |
if '[C@H](CO)' in content: # D-form
|
455 |
return 'ser', mods
|
456 |
return 'Ser', mods
|
457 |
|
458 |
if 'CSSC' in content:
|
459 |
+
# Check for various cysteine-cysteine bridge patterns
|
460 |
if re.search(r'\[C@@H\].*CSSC.*\[C@@H\]', content) or re.search(r'\[C@H\].*CSSC.*\[C@H\]', content):
|
461 |
if '[C@H]' in content and not '[C@@H]' in content: # D-form
|
462 |
return 'cys-cys', mods
|
463 |
return 'Cys-Cys', mods
|
464 |
|
465 |
+
# Pattern for cysteine with N-terminal amine group
|
466 |
if '[C@@H](N)CSSC' in content or '[C@H](N)CSSC' in content:
|
467 |
if '[C@H](N)CSSC' in content: # D-form
|
468 |
return 'cys-cys', mods
|
469 |
return 'Cys-Cys', mods
|
470 |
|
471 |
+
# Pattern for cysteine with C-terminal carboxyl
|
472 |
if 'CSSC[C@@H](C(=O)O)' in content or 'CSSC[C@H](C(=O)O)' in content:
|
473 |
if 'CSSC[C@H](C(=O)O)' in content: # D-form
|
474 |
return 'cys-cys', mods
|
|
|
476 |
|
477 |
# Cysteine patterns (C/c)
|
478 |
if '[C@H](CS)' in content or '[C@@H](CS)' in content:
|
479 |
+
# Check stereochemistry for D/L
|
480 |
if '[C@H](CS)' in content: # D-form
|
481 |
return 'cys', mods
|
482 |
return 'Cys', mods
|
483 |
|
484 |
# Methionine patterns (M/m)
|
485 |
if ('CCSC' in content) or ("CSCC" in content):
|
486 |
+
# Check stereochemistry for D/L
|
487 |
if '[C@H](CCSC)' in content: # D-form
|
488 |
return 'met', mods
|
489 |
elif '[C@H]' in content:
|
|
|
492 |
|
493 |
# Glutamine patterns (Q/q)
|
494 |
if (content == '[C@@H](CC' or content == '[C@H](CC' and segment.get('bond_before')=='C(=O)N' and segment.get('bond_after')=='C(=O)N') or ('CCC(=O)N' in content) or ('CCC(N)=O' in content):
|
495 |
+
# Check stereochemistry for D/L
|
496 |
if '[C@H](CCC(=O)N)' in content: # D-form
|
497 |
return 'gln', mods
|
498 |
return 'Gln', mods
|
499 |
|
500 |
# Asparagine patterns (N/n)
|
501 |
if (content == '[C@@H](C' or content == '[C@H](C' and segment.get('bond_before')=='C(=O)N' and segment.get('bond_after')=='C(=O)N') or ('CC(=O)N' in content) or ('CCN(=O)' in content) or ('CC(N)=O' in content):
|
502 |
+
# Check stereochemistry for D/L
|
503 |
if '[C@H](CC(=O)N)' in content: # D-form
|
504 |
return 'asn', mods
|
505 |
return 'Asn', mods
|
506 |
|
507 |
# Glutamic acid patterns (E/e)
|
508 |
if ('CCC(=O)O' in content):
|
509 |
+
# Check stereochemistry for D/L
|
510 |
if '[C@H](CCC(=O)O)' in content: # D-form
|
511 |
return 'glu', mods
|
512 |
return 'Glu', mods
|
513 |
|
514 |
# Aspartic acid patterns (D/d)
|
515 |
if ('CC(=O)O' in content):
|
516 |
+
# Check stereochemistry for D/L
|
517 |
if '[C@H](CC(=O)O)' in content: # D-form
|
518 |
return 'asp', mods
|
519 |
return 'Asp', mods
|
520 |
|
521 |
if re.search(r'Cc\d+c\[nH\]cn\d+', content) or re.search(r'Cc\d+cnc\[nH\]\d+', content):
|
522 |
+
# Check stereochemistry for D/L
|
523 |
if '[C@H]' in content: # D-form
|
524 |
return 'his', mods
|
525 |
return 'His', mods
|
|
|
530 |
'N[C@H](CCCC)' in content or '[C@H](CCCC)' in content) and 'CC(C)' not in content:
|
531 |
return 'Nle', mods
|
532 |
# Aib - alpha-aminoisobutyric acid (2-aminoisobutyric acid)
|
533 |
+
# More flexible pattern detection
|
534 |
+
if 'C(C)(C)(N)' in content:
|
535 |
return 'Aib', mods
|
536 |
|
537 |
+
# Partial Aib pattern but NOT part of t-butyl ester
|
538 |
+
if 'C(C)(C)' in content and 'OC(C)(C)C' not in content:
|
539 |
+
if (segment.get('bond_before') and segment.get('bond_after') and
|
540 |
+
any(bond in segment['bond_before'] for bond in ['C(=O)N', 'NC(=O)', 'N(C)C(=O)']) and
|
541 |
+
any(bond in segment['bond_after'] for bond in ['NC(=O)', 'C(=O)N', 'N(C)C(=O)'])):
|
542 |
+
return 'Aib', mods
|
543 |
+
|
544 |
+
# Dtg - Asp(OtBu)-(Dmb)Gly - Simplified pattern for better detection
|
545 |
if 'CC(=O)OC(C)(C)C' in content and 'CC1=C(C=C(C=C1)OC)OC' in content:
|
546 |
return 'Dtg', mods
|
547 |
|
548 |
|
549 |
+
# Kpg - Lys(palmitoyl-Glu-OtBu) - Simplified pattern
|
550 |
if 'CCCNC(=O)' in content and 'CCCCCCCCCCCC' in content:
|
551 |
return 'Kpg', mods
|
552 |
|
553 |
+
|
|
|
|
|
554 |
|
555 |
return None, mods
|
556 |
|
|
|
571 |
#mods.append('O-linked')
|
572 |
|
573 |
return mods
|
574 |
+
|
575 |
def analyze_structure(self, smiles):
|
576 |
"""Main analysis function with preprocessing for complex residues"""
|
577 |
print("\nAnalyzing structure:", smiles)
|
|
|
588 |
# Check if it's cyclic
|
589 |
is_cyclic, peptide_cycles, aromatic_cycles = self.is_cyclic(smiles)
|
590 |
|
591 |
+
# Split into segments, respecting protected residues
|
592 |
segments = self.split_on_bonds(preprocessed_smiles, protected_residues)
|
593 |
|
594 |
print("\nSegment Analysis:")
|
|
|
610 |
else:
|
611 |
print(f"Warning: Could not identify residue in segment: {segment.get('content', 'None')}")
|
612 |
|
613 |
+
# Format the sequence
|
614 |
three_letter = '-'.join(sequence)
|
615 |
|
616 |
+
# Use the mapping to create one-letter code
|
617 |
one_letter = ''.join(self.three_to_one.get(aa.split('(')[0], 'X') for aa in sequence)
|
618 |
|
619 |
if is_cyclic:
|
|
|
899 |
return "Error: Input SMILES does not appear to be a peptide structure.", None, None, []
|
900 |
|
901 |
try:
|
902 |
+
# Preprocess to protect complex residues
|
903 |
+
pre_smiles, protected_residues = analyzer.preprocess_complex_residues(smiles)
|
904 |
+
# Report protected residues in summary if any
|
905 |
+
protected_info = None
|
906 |
+
if protected_residues:
|
907 |
+
protected_info = [res['type'] for res in protected_residues]
|
908 |
+
|
909 |
mol = Chem.MolFromSmiles(smiles)
|
910 |
if mol is None:
|
911 |
return "Error: Invalid SMILES notation.", None, None, []
|
|
|
933 |
|
934 |
except Exception as e:
|
935 |
return f"Error generating 3D structures: {str(e)}", None, None, []
|
|
|
|
|
|
|
|
|
|
|
936 |
|
937 |
+
analysis = analyzer.analyze_structure(smiles)
|
938 |
+
three_letter = analysis['three_letter']
|
939 |
+
one_letter = analysis['one_letter']
|
940 |
+
is_cyclic = analysis['is_cyclic']
|
941 |
+
|
942 |
# Only include segment analysis in output if requested
|
943 |
if show_segment_details:
|
944 |
+
segments = analyzer.split_on_bonds(smiles)
|
945 |
+
|
946 |
+
sequence_parts = []
|
947 |
+
output_text = ""
|
948 |
output_text += "Segment Analysis:\n"
|
949 |
for i, segment in enumerate(segments):
|
950 |
output_text += f"\nSegment {i}:\n"
|
|
|
963 |
else:
|
964 |
output_text += f"Warning: Could not identify residue in segment: {segment['content']}\n"
|
965 |
output_text += "\n"
|
966 |
+
is_cyclic, peptide_cycles, aromatic_cycles = analyzer.is_cyclic(smiles)
|
967 |
+
three_letter = '-'.join(sequence_parts)
|
968 |
+
one_letter = ''.join(analyzer.three_to_one.get(aa.split('(')[0], 'X') for aa in sequence_parts)
|
969 |
else:
|
970 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
971 |
|
972 |
img_cyclic = annotate_cyclic_structure(mol, three_letter)
|
973 |
|
|
|
994 |
for filepath in structure_files:
|
995 |
summary += f"- {os.path.basename(filepath)}\n"
|
996 |
|
997 |
+
return summary, img_cyclic, img_linear, structure_files if structure_files else []
|
998 |
|
999 |
except Exception as e:
|
1000 |
return f"Error processing SMILES: {str(e)}", None, None, []
|
|
|
1117 |
)
|
1118 |
|
1119 |
if __name__ == "__main__":
|
|
|
1120 |
iface.launch(share=True)
|