import os import gradio as gr import gradio.blocks import re import pandas as pd from io import StringIO import rdkit from rdkit import Chem from rdkit.Chem import AllChem, Draw import numpy as np from PIL import Image, ImageDraw, ImageFont import matplotlib.pyplot as plt import matplotlib.patches as patches from io import BytesIO import tempfile from rdkit import Chem class PeptideAnalyzer: def __init__(self): self.bond_patterns = [ #(r'OC\(=O\)', 'ester'), # Ester bond (r'N\(C\)C\(=O\)', 'n_methyl'), # N-methylated peptide bond (r'N[0-9]C\(=O\)', 'proline'), # Proline peptide bond (r'NC\(=O\)', 'peptide'), # Standard peptide bond (r'C\(=O\)N\(C\)', 'n_methyl_reverse'), # Reverse N-methylated (r'C\(=O\)N[12]?', 'peptide_reverse') # Reverse peptide bond ] self.complex_residue_patterns = [ # Kpg - Lys(palmitoyl-Glu-OtBu) - Exact pattern for the specific structure (r'\[C[@]H\]\(CCCNC\(=O\)CCC\[C@@H\]\(NC\(=O\)CCCCCCCCCCCCCCCC\)C\(=O\)OC\(C\)\(C\)C\)', 'Kpg'), (r'CCCCCCCCCCCCCCCCC\(=O\)N\[C@H\]\(CCCC\(=O\)NCCC\[C@@H\]', 'Kpg'), (r'\[C@*H\]\(CSC\(c\d+ccccc\d+\)\(c\d+ccccc\d+\)c\d+ccc\(OC\)cc\d+\)', 'Cmt'), (r'CSC\(c.*?c.*?OC\)', 'Cmt'), # Core structure of Cys-Mmt group (r'COc.*?ccc\(C\(SC', 'Cmt'), # Start of Cmt in cyclic peptides (r'c2ccccc2\)c2ccccc2\)cc', 'Cmt'), # End of Cmt in cyclic peptides # Glu(OAll) - Only match the complete pattern to avoid partial matches (r'C=CCOC\(=O\)CC\[C@@H\]', 'Eal'), (r'\(C\)OP\(=O\)\(O\)OCc\d+ccccc\d+', 'Tpb'), #(r'COc\d+ccc\(C\(SC\[C@@H\]\d+.*?\)\(c\d+ccccc\d+\)c\d+ccccc\d+\)cc\d+', 'Cmt-cyclic'), # Dtg - Asp(OtBu)-(Dmb)Gly - Full pattern (r'CN\(Cc\d+ccc\(OC\)cc\d+OC\)C\(=O\)\[C@H\]\(CC\(=O\)OC\(C\)\(C\)C\)', 'Dtg'), (r'C\(=O\)N\(CC\d+=C\(C=C\(C=C\d+\)OC\)OC\)CC\(=O\)', 'Dtg'), (r'N\[C@@H\]\(CC\(=O\)OC\(C\)\(C\)C\)C\(=O\)N\(CC\d+=C\(C=C\(C=C\d+\)OC\)OC\)CC\(=O\)', 'Dtg'), ] # Three to one letter code mapping self.three_to_one = { 'Ala': 'A', 'Cys': 'C', 'Asp': 'D', 'Glu': 'E', 'Phe': 'F', 'Gly': 'G', 'His': 'H', 'Ile': 'I', 'Lys': 'K', 'Leu': 'L', 'Met': 'M', 'Asn': 'N', 'Pro': 'P', 'Gln': 'Q', 'Arg': 'R', 'Ser': 'S', 'Thr': 'T', 'Val': 'V', 'Trp': 'W', 'Tyr': 'Y', 'ala': 'a', 'cys': 'c', 'asp': 'd', 'glu': 'e', 'phe': 'f', 'gly': 'g', 'his': 'h', 'ile': 'i', 'lys': 'k', 'leu': 'l', 'met': 'm', 'asn': 'n', 'pro': 'p', 'gln': 'q', 'arg': 'r', 'ser': 's', 'thr': 't', 'val': 'v', 'trp': 'w', 'tyr': 'y', 'Cmt-cyclic': 'Ĉ', 'Aib': 'Ŷ', 'Dtg': 'Ĝ', 'Cmt': 'Ĉ', 'Eal': 'Ė', 'Nml': "Ŀ", 'Nma': 'Ṃ', 'Kpg': 'Ƙ', 'Tpb': 'Ṯ', 'Cyl': 'Ċ', 'Nle': 'Ł', 'Hph': 'Ĥ', 'Cys-Cys': 'CC', 'cys-cys': 'cc', } def preprocess_complex_residues(self, smiles): """Identify and protect complex residues with internal peptide bonds - improved to prevent overlaps""" # Create a mapping of positions to complex residue types complex_positions = [] # Search for all complex residue patterns for pattern, residue_type in self.complex_residue_patterns: for match in re.finditer(pattern, smiles): # Only add if this position doesn't overlap with existing matches if not any(pos['start'] <= match.start() < pos['end'] or pos['start'] < match.end() <= pos['end'] for pos in complex_positions): complex_positions.append({ 'start': match.start(), 'end': match.end(), 'type': residue_type, 'pattern': match.group() }) # Sort by position (to handle potential overlapping matches) complex_positions.sort(key=lambda x: x['start']) # If no complex residues found, return original SMILES if not complex_positions: return smiles, [] # Build a new SMILES string, protecting complex residues preprocessed_smiles = smiles offset = 0 # Track offset from replacements protected_residues = [] for pos in complex_positions: # Adjust positions based on previous replacements start = pos['start'] + offset end = pos['end'] + offset # Extract the complex residue part complex_part = preprocessed_smiles[start:end] # Verify this is a complete residue (should have proper amino acid structure) if not ('[C@H]' in complex_part or '[C@@H]' in complex_part): continue # Skip if not a proper amino acid structure # Create a placeholder for this complex residue placeholder = f"COMPLEX_RESIDUE_{len(protected_residues)}" # Replace the complex part with the placeholder preprocessed_smiles = preprocessed_smiles[:start] + placeholder + preprocessed_smiles[end:] # Track the offset change offset += len(placeholder) - (end - start) # Store the residue information protected_residues.append({ 'placeholder': placeholder, 'type': pos['type'], 'content': complex_part }) #print(f"Protected {pos['type']}: {complex_part[:20]}... as {placeholder}") return preprocessed_smiles, protected_residues def split_on_bonds(self, smiles, protected_residues=None): """Split SMILES into segments based on peptide bonds, with improved handling of protected residues""" positions = [] used = set() # First, handle protected complex residues if any if protected_residues: for residue in protected_residues: match = re.search(residue['placeholder'], smiles) if match: positions.append({ 'start': match.start(), 'end': match.end(), 'type': 'complex', 'pattern': residue['placeholder'], 'residue_type': residue['type'], 'content': residue['content'] }) used.update(range(match.start(), match.end())) # Find all peptide bonds bond_positions = [] # Find Gly pattern first gly_pattern = r'NCC\(=O\)' for match in re.finditer(gly_pattern, smiles): if not any(p in range(match.start(), match.end()) for p in used): bond_positions.append({ 'start': match.start(), 'end': match.end(), 'type': 'gly', 'pattern': match.group() }) used.update(range(match.start(), match.end())) # Then find all other bonds for pattern, bond_type in self.bond_patterns: for match in re.finditer(pattern, smiles): if not any(p in range(match.start(), match.end()) for p in used): bond_positions.append({ 'start': match.start(), 'end': match.end(), 'type': bond_type, 'pattern': match.group() }) used.update(range(match.start(), match.end())) # Sort all positions bond_positions.sort(key=lambda x: x['start']) # Combine complex residue positions and bond positions all_positions = positions + bond_positions all_positions.sort(key=lambda x: x['start']) # Create segments segments = [] # First segment (if not starting with a bond or complex residue) if all_positions and all_positions[0]['start'] > 0: segments.append({ 'content': smiles[0:all_positions[0]['start']], 'bond_after': all_positions[0]['pattern'] if all_positions[0]['type'] != 'complex' else None, 'complex_after': all_positions[0]['pattern'] if all_positions[0]['type'] == 'complex' else None }) # Process segments between positions for i in range(len(all_positions)-1): current = all_positions[i] next_pos = all_positions[i+1] # Handle complex residues if current['type'] == 'complex': segments.append({ 'content': current['content'], 'bond_before': all_positions[i-1]['pattern'] if i > 0 and all_positions[i-1]['type'] != 'complex' else None, 'bond_after': next_pos['pattern'] if next_pos['type'] != 'complex' else None, 'complex_type': current['residue_type'] }) # Handle regular bonds elif current['type'] == 'gly': segments.append({ 'content': 'NCC(=O)', 'bond_before': all_positions[i-1]['pattern'] if i > 0 and all_positions[i-1]['type'] != 'complex' else None, 'bond_after': next_pos['pattern'] if next_pos['type'] != 'complex' else None }) else: # Only create segment if there's content between this bond and next position content = smiles[current['end']:next_pos['start']] if content and next_pos['type'] != 'complex': segments.append({ 'content': content, 'bond_before': current['pattern'], 'bond_after': next_pos['pattern'] if next_pos['type'] != 'complex' else None }) # Last segment if all_positions and all_positions[-1]['end'] < len(smiles): if all_positions[-1]['type'] == 'complex': segments.append({ 'content': all_positions[-1]['content'], 'bond_before': all_positions[-2]['pattern'] if len(all_positions) > 1 and all_positions[-2]['type'] != 'complex' else None, 'complex_type': all_positions[-1]['residue_type'] }) else: segments.append({ 'content': smiles[all_positions[-1]['end']:], 'bond_before': all_positions[-1]['pattern'] }) return segments def is_peptide(self, smiles): """Check if the SMILES represents a peptide structure""" mol = Chem.MolFromSmiles(smiles) if mol is None: return False # Look for peptide bonds: NC(=O) pattern peptide_bond_pattern = Chem.MolFromSmarts('[NH][C](=O)') if mol.HasSubstructMatch(peptide_bond_pattern): return True # Look for N-methylated peptide bonds: N(C)C(=O) pattern n_methyl_pattern = Chem.MolFromSmarts('[N;H0;$(NC)](C)[C](=O)') if mol.HasSubstructMatch(n_methyl_pattern): return True return False def is_cyclic(self, smiles): """Improved cyclic peptide detection""" # Check for C-terminal carboxyl if smiles.endswith('C(=O)O'): return False, [], [] # Find all numbers used in ring closures ring_numbers = re.findall(r'(?:^|[^c])[0-9](?=[A-Z@\(\)])', smiles) # Find aromatic ring numbers aromatic_matches = re.findall(r'c[0-9](?:ccccc|c\[nH\]c)[0-9]', smiles) aromatic_cycles = [] for match in aromatic_matches: numbers = re.findall(r'[0-9]', match) aromatic_cycles.extend(numbers) # Numbers that aren't part of aromatic rings are peptide cycles peptide_cycles = [n for n in ring_numbers if n not in aromatic_cycles] is_cyclic = len(peptide_cycles) > 0 and not smiles.endswith('C(=O)O') return is_cyclic, peptide_cycles, aromatic_cycles def clean_terminal_carboxyl(self, segment): """Remove C-terminal carboxyl only if it's the true terminus""" content = segment['content'] # Only clean if: # 1. Contains C(=O)O # 2. No bond_after exists (meaning it's the last segment) if 'C(=O)O' in content and not segment.get('bond_after'): # Remove C(=O)O pattern regardless of position cleaned = re.sub(r'\(C\(=O\)O\)', '', content) # Remove any leftover empty parentheses cleaned = re.sub(r'\(\)', '', cleaned) return cleaned return content def identify_residue(self, segment): """Identify residue with Pro reconstruction""" # Only clean terminal carboxyl if this is the last segment if 'complex_type' in segment: return segment['complex_type'], [] content = self.clean_terminal_carboxyl(segment) mods = self.get_modifications(segment) if content.startswith('COc1ccc(C(SC[C@@H]'): print("DIRECT MATCH: Found Cmt at beginning") return 'Cmt', mods # VERY EXPLICIT check for the last segment in your example if '[C@@H]3CCCN3C2=O)(c2ccccc2)c2ccccc2)cc' in content: print("DIRECT MATCH: Found Pro at end") return 'Pro', mods # === Original amino acid patterns === # Eal - Glu(OAll) - Multiple patterns if 'CCC(=O)OCC=C' in content or 'CC(=O)OCC=C' in content or 'C=CCOC(=O)CC' in content: return 'Eal', mods # Proline (P) - flexible ring numbers if any([ # Check for any ring number in bond patterns (segment.get('bond_after', '').startswith(f'N{n}C(=O)') and 'CCC' in content and any(f'[C@@H]{n}' in content or f'[C@H]{n}' in content for n in '123456789')) for n in '123456789' ]) or any([(segment.get('bond_before', '').startswith(f'C(=O)N{n}') and 'CCC' in content and any(f'CCC{n}' for n in '123456789')) for n in '123456789' ]) or any([ # Check ending patterns with any ring number (f'CCCN{n}' in content and content.endswith('=O') and any(f'[C@@H]{n}' in content or f'[C@H]{n}' in content for n in '123456789')) for n in '123456789' ]) or any([ # Handle CCC[C@H]n patterns (content == f'CCC[C@H]{n}' and segment.get('bond_before', '').startswith(f'C(=O)N{n}')) or (content == f'CCC[C@@H]{n}' and segment.get('bond_before', '').startswith(f'C(=O)N{n}')) or # N-terminal Pro with any ring number (f'N{n}CCC[C@H]{n}' in content) or (f'N{n}CCC[C@@H]{n}' in content) for n in '123456789' ]): return 'Pro', mods # D-Proline (p) if ('N1[C@H](CCC1)' in content): return 'pro', mods # Tryptophan (W) - more specific indole pattern if re.search(r'c[0-9]c\[nH\]c[0-9]ccccc[0-9][0-9]', content) and \ 'c[nH]c' in content.replace(' ', ''): # Check stereochemistry for D/L if '[C@H](CC' in content: # D-form return 'trp', mods return 'Trp', mods # Lysine (K) - both patterns if '[C@@H](CCCCN)' in content or '[C@H](CCCCN)' in content: # Check stereochemistry for D/L if '[C@H](CCCCN)' in content: # D-form return 'lys', mods return 'Lys', mods # Arginine (R) - both patterns if '[C@@H](CCCNC(=N)N)' in content or '[C@H](CCCNC(=N)N)' in content: # Check stereochemistry for D/L if '[C@H](CCCNC(=N)N)' in content: # D-form return 'arg', mods return 'Arg', mods # Regular residue identification if content == 'C' and segment.get('bond_before') and segment.get('bond_after'): # If it's surrounded by peptide bonds, it's almost certainly Gly if ('C(=O)N' in segment['bond_before'] or 'NC(=O)' in segment['bond_before'] or 'N(C)C(=O)' in segment['bond_before']) and \ ('NC(=O)' in segment['bond_after'] or 'C(=O)N' in segment['bond_after'] or 'N(C)C(=O)' in segment['bond_after']): return 'Gly', mods # Case 2: Cyclic terminal glycine - typically contains 'CNC' with ring closure if 'CNC' in content and any(f'C{i}=' in content for i in range(1, 10)): return 'Gly', mods # This will catch patterns like 'CNC1=O' if not segment.get('bond_before') and segment.get('bond_after'): if content == 'C' or content == 'NC': if ('NC(=O)' in segment['bond_after'] or 'C(=O)N' in segment['bond_after'] or 'N(C)C(=O)' in segment['bond_after']): return 'Gly', mods # Leucine patterns (L/l) if 'CC(C)C[C@H]' in content or 'CC(C)C[C@@H]' in content or '[C@@H](CC(C)C)' in content or '[C@H](CC(C)C)' in content or (('N[C@H](CCC(C)C)' in content or 'N[C@@H](CCC(C)C)' in content) and segment.get('bond_before') is None): # Check stereochemistry for D/L if '[C@H](CC(C)C)' in content or 'CC(C)C[C@H]' in content: # D-form return 'leu', mods return 'Leu', mods # Threonine patterns (T/t) if '[C@@H]([C@@H](C)O)' in content or '[C@H]([C@H](C)O)' in content or '[C@@H]([C@H](C)O)' in content or '[C@H]([C@@H](C)O)' in content: # Check both stereochemistry patterns if '[C@H]([C@@H](C)O)' in content: # D-form return 'thr', mods return 'Thr', mods if re.search(r'\[C@H\]\(CCc\d+ccccc\d+\)', content) or re.search(r'\[C@@H\]\(CCc\d+ccccc\d+\)', content): return 'Hph', mods # Phenylalanine patterns (F/f) if re.search(r'\[C@H\]\(Cc\d+ccccc\d+\)', content) or re.search(r'\[C@@H\]\(Cc\d+ccccc\d+\)', content): # Check stereochemistry for D/L if re.search(r'\[C@H\]\(Cc\d+ccccc\d+\)', content): # D-form return 'phe', mods return 'Phe', mods if ('CC(C)[C@@H]' in content or 'CC(C)[C@H]' in content or '[C@H](C(C)C)' in content or '[C@@H](C(C)C)' in content or 'C(C)C[C@H]' in content or 'C(C)C[C@@H]' in content): # Make sure it's not leucine if not any(p in content for p in ['CC(C)C[C@H]', 'CC(C)C[C@@H]', 'CCC(=O)']): # Check stereochemistry if '[C@H]' in content and not '[C@@H]' in content: # D-form return 'val', mods return 'Val', mods # Isoleucine patterns (I/i) # First check for various isoleucine patterns while excluding valine if (any(['CC[C@@H](C)' in content, '[C@@H](C)CC' in content, '[C@@H](CC)C' in content, 'C(C)C[C@@H]' in content, '[C@@H]([C@H](C)CC)' in content, '[C@H]([C@@H](C)CC)' in content, '[C@@H]([C@@H](C)CC)' in content, '[C@H]([C@H](C)CC)' in content, 'C[C@H](CC)[C@@H]' in content, 'C[C@@H](CC)[C@H]' in content, 'C[C@H](CC)[C@H]' in content, 'C[C@@H](CC)[C@@H]' in content, 'CC[C@H](C)[C@@H]' in content, 'CC[C@@H](C)[C@H]' in content, 'CC[C@H](C)[C@H]' in content, 'CC[C@@H](C)[C@@H]' in content]) and 'CC(C)C' not in content): # Exclude valine pattern # Check stereochemistry for D/L forms if any(['[C@H]([C@@H](CC)C)' in content, '[C@H](CC)C' in content, '[C@H]([C@@H](C)CC)' in content, '[C@H]([C@H](C)CC)' in content, 'C[C@@H](CC)[C@H]' in content, 'C[C@H](CC)[C@H]' in content, 'CC[C@@H](C)[C@H]' in content, 'CC[C@H](C)[C@H]' in content]): # D-form return 'ile', mods # All other stereochemistries are treated as L-form return 'Ile', mods # Tpb - Thr(PO(OBzl)OH) - Multiple patterns if re.search(r'\(C\)OP\(=O\)\(O\)OCc[0-9]ccccc[0-9]', content) or 'OP(=O)(O)OCC' in content: return 'Tpb', mods # Alanine patterns (A/a) if ('[C@H](C)' in content or '[C@@H](C)' in content): if not any(p in content for p in ['C(C)C', 'COC', 'CN(', 'C(C)O', 'CC[C@H]', 'CC[C@@H]']): # Check stereochemistry for D/L if '[C@H](C)' in content: # D-form return 'ala', mods return 'Ala', mods # Tyrosine patterns (Y/y) if re.search(r'Cc[0-9]ccc\(O\)cc[0-9]', content): # Check stereochemistry for D/L if '[C@H](Cc1ccc(O)cc1)' in content: # D-form return 'tyr', mods return 'Tyr', mods # Serine patterns (S/s) if '[C@H](CO)' in content or '[C@@H](CO)' in content: if not ('C(C)O' in content or 'COC' in content): # Check stereochemistry for D/L if '[C@H](CO)' in content: # D-form return 'ser', mods return 'Ser', mods if 'CSSC' in content: # Check for various cysteine-cysteine bridge patterns if re.search(r'\[C@@H\].*CSSC.*\[C@@H\]', content) or re.search(r'\[C@H\].*CSSC.*\[C@H\]', content): if '[C@H]' in content and not '[C@@H]' in content: # D-form return 'cys-cys', mods return 'Cys-Cys', mods # Pattern for cysteine with N-terminal amine group if '[C@@H](N)CSSC' in content or '[C@H](N)CSSC' in content: if '[C@H](N)CSSC' in content: # D-form return 'cys-cys', mods return 'Cys-Cys', mods # Pattern for cysteine with C-terminal carboxyl if 'CSSC[C@@H](C(=O)O)' in content or 'CSSC[C@H](C(=O)O)' in content: if 'CSSC[C@H](C(=O)O)' in content: # D-form return 'cys-cys', mods return 'Cys-Cys', mods # Cysteine patterns (C/c) if '[C@H](CS)' in content or '[C@@H](CS)' in content: # Check stereochemistry for D/L if '[C@H](CS)' in content: # D-form return 'cys', mods return 'Cys', mods # Methionine patterns (M/m) if ('CCSC' in content) or ("CSCC" in content): # Check stereochemistry for D/L if '[C@H](CCSC)' in content: # D-form return 'met', mods elif '[C@H]' in content: return 'met', mods return 'Met', mods # Glutamine patterns (Q/q) if (content == '[C@@H](CC' or content == '[C@H](CC' and segment.get('bond_before')=='C(=O)N' and segment.get('bond_after')=='C(=O)N') or ('CCC(=O)N' in content) or ('CCC(N)=O' in content): # Check stereochemistry for D/L if '[C@H](CCC(=O)N)' in content: # D-form return 'gln', mods return 'Gln', mods # Asparagine patterns (N/n) if (content == '[C@@H](C' or content == '[C@H](C' and segment.get('bond_before')=='C(=O)N' and segment.get('bond_after')=='C(=O)N') or ('CC(=O)N' in content) or ('CCN(=O)' in content) or ('CC(N)=O' in content): # Check stereochemistry for D/L if '[C@H](CC(=O)N)' in content: # D-form return 'asn', mods return 'Asn', mods # Glutamic acid patterns (E/e) if ('CCC(=O)O' in content): # Check stereochemistry for D/L if '[C@H](CCC(=O)O)' in content: # D-form return 'glu', mods return 'Glu', mods # Aspartic acid patterns (D/d) if ('CC(=O)O' in content): # Check stereochemistry for D/L if '[C@H](CC(=O)O)' in content: # D-form return 'asp', mods return 'Asp', mods if re.search(r'Cc\d+c\[nH\]cn\d+', content) or re.search(r'Cc\d+cnc\[nH\]\d+', content): # Check stereochemistry for D/L if '[C@H]' in content: # D-form return 'his', mods return 'His', mods if 'C2(CCCC2)' in content or 'C1(CCCC1)' in content or re.search(r'C\d+\(CCCC\d+\)', content): return 'Cyl', mods if ('N[C@@H](CCCC)' in content or '[C@@H](CCCC)' in content or 'CCCC[C@@H]' in content or 'N[C@H](CCCC)' in content or '[C@H](CCCC)' in content) and 'CC(C)' not in content: return 'Nle', mods # Aib - alpha-aminoisobutyric acid (2-aminoisobutyric acid) # More flexible pattern detection if 'C(C)(C)(N)' in content: return 'Aib', mods # Partial Aib pattern but NOT part of t-butyl ester if 'C(C)(C)' in content and 'OC(C)(C)C' not in content: if (segment.get('bond_before') and segment.get('bond_after') and any(bond in segment['bond_before'] for bond in ['C(=O)N', 'NC(=O)', 'N(C)C(=O)']) and any(bond in segment['bond_after'] for bond in ['NC(=O)', 'C(=O)N', 'N(C)C(=O)'])): return 'Aib', mods # Dtg - Asp(OtBu)-(Dmb)Gly - Simplified pattern for better detection if 'CC(=O)OC(C)(C)C' in content and 'CC1=C(C=C(C=C1)OC)OC' in content: return 'Dtg', mods # Kpg - Lys(palmitoyl-Glu-OtBu) - Simplified pattern if 'CCCNC(=O)' in content and 'CCCCCCCCCCCC' in content: return 'Kpg', mods return None, mods def get_modifications(self, segment): """Get modifications based on bond types and segment content - fixed to avoid duplicates""" mods = [] # Check for N-methylation in any form, but only add it once # Check both bonds and segment content for N-methylation patterns if ((segment.get('bond_after') and ('N(C)' in segment['bond_after'] or segment['bond_after'].startswith('C(=O)N(C)'))) or ('N(C)C(=O)' in segment['content'] or 'N(C)C1=O' in segment['content']) or (segment['content'].endswith('N(C)C(=O)') or segment['content'].endswith('N(C)C1=O'))): mods.append('N-Me') # Check for O-linked modifications #if segment.get('bond_after') and 'OC(=O)' in segment['bond_after']: #mods.append('O-linked') return mods def analyze_structure(self, smiles): """Main analysis function with preprocessing for complex residues""" #print("\nAnalyzing structure:", smiles) # Pre-process to identify complex residues first preprocessed_smiles, protected_residues = self.preprocess_complex_residues(smiles) """ if protected_residues: print(f"Identified {len(protected_residues)} complex residues during pre-processing") for i, residue in enumerate(protected_residues): print(f"Complex residue {i+1}: {residue['type']}") """ # Check if it's cyclic is_cyclic, peptide_cycles, aromatic_cycles = self.is_cyclic(smiles) # Split into segments, respecting protected residues segments = self.split_on_bonds(preprocessed_smiles, protected_residues) #print("\nSegment Analysis:") sequence = [] for i, segment in enumerate(segments): """ print(f"\nSegment {i}:") print(f"Content: {segment.get('content', 'None')}") print(f"Bond before: {segment.get('bond_before', 'None')}") print(f"Bond after: {segment.get('bond_after', 'None')}") """ residue, mods = self.identify_residue(segment) if residue: if mods: sequence.append(f"{residue}({','.join(mods)})") else: sequence.append(residue) #print(f"Identified as: {residue}") #print(f"Modifications: {mods}") else: print(f"Warning: Could not identify residue in segment: {segment.get('content', 'None')}") # Format the sequence three_letter = '-'.join(sequence) # Use the mapping to create one-letter code one_letter = ''.join(self.three_to_one.get(aa.split('(')[0], 'X') for aa in sequence) if is_cyclic: three_letter = f"cyclo({three_letter})" one_letter = f"cyclo({one_letter})" """ print(f"\nFinal sequence: {three_letter}") print(f"One-letter code: {one_letter}") print(f"Is cyclic: {is_cyclic}") print(f"Peptide cycles: {peptide_cycles}") print(f"Aromatic cycles: {aromatic_cycles}") """ return { 'three_letter': three_letter, 'one_letter': one_letter, 'is_cyclic': is_cyclic, 'residues': sequence } def annotate_cyclic_structure(mol, sequence): """Create structure visualization""" AllChem.Compute2DCoords(mol) drawer = Draw.rdMolDraw2D.MolDraw2DCairo(2000, 2000) # Draw molecule first drawer.drawOptions().addAtomIndices = False drawer.DrawMolecule(mol) drawer.FinishDrawing() # Convert to PIL Image img = Image.open(BytesIO(drawer.GetDrawingText())) draw = ImageDraw.Draw(img) try: small_font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 60) except OSError: try: small_font = ImageFont.truetype("arial.ttf", 60) except OSError: print("Warning: TrueType fonts not available, using default font") small_font = ImageFont.load_default() # Header seq_text = f"Sequence: {sequence}" bbox = draw.textbbox((1000, 100), seq_text, font=small_font) padding = 10 draw.rectangle([bbox[0]-padding, bbox[1]-padding, bbox[2]+padding, bbox[3]+padding], fill='white', outline='white') draw.text((1000, 100), seq_text, font=small_font, fill='black', anchor="mm") return img def create_enhanced_linear_viz(sequence, smiles): """"Linear visualization""" analyzer = PeptideAnalyzer() fig = plt.figure(figsize=(15, 10)) gs = fig.add_gridspec(2, 1, height_ratios=[1, 2]) ax_struct = fig.add_subplot(gs[0]) ax_detail = fig.add_subplot(gs[1]) if sequence.startswith('cyclo('): residues = sequence[6:-1].split('-') else: residues = sequence.split('-') segments = analyzer.split_on_bonds(smiles) print(f"Number of residues: {len(residues)}") print(f"Number of segments: {len(segments)}") ax_struct.set_xlim(0, 10) ax_struct.set_ylim(0, 2) num_residues = len(residues) spacing = 9.0 / (num_residues - 1) if num_residues > 1 else 9.0 y_pos = 1.5 for i in range(num_residues): x_pos = 0.5 + i * spacing rect = patches.Rectangle((x_pos-0.3, y_pos-0.2), 0.6, 0.4, facecolor='lightblue', edgecolor='black') ax_struct.add_patch(rect) if i < num_residues - 1: segment = segments[i] if i < len(segments) else None if segment: bond_type = 'ester' if 'O-linked' in segment.get('bond_after', '') else 'peptide' is_n_methylated = 'N-Me' in segment.get('bond_after', '') bond_color = 'red' if bond_type == 'ester' else 'black' linestyle = '--' if bond_type == 'ester' else '-' ax_struct.plot([x_pos+0.3, x_pos+spacing-0.3], [y_pos, y_pos], color=bond_color, linestyle=linestyle, linewidth=2) mid_x = x_pos + spacing/2 bond_label = f"{bond_type}" if is_n_methylated: bond_label += "\n(N-Me)" ax_struct.text(mid_x, y_pos+0.1, bond_label, ha='center', va='bottom', fontsize=10, color=bond_color) ax_struct.text(x_pos, y_pos-0.5, residues[i], ha='center', va='top', fontsize=14) ax_detail.set_ylim(0, len(segments)+1) ax_detail.set_xlim(0, 1) segment_y = len(segments) for i, segment in enumerate(segments): y = segment_y - i # Check if this is a bond or residue residue, mods = analyzer.identify_residue(segment) if residue: text = f"Residue {i+1}: {residue}" if mods: text += f" ({', '.join(mods)})" color = 'blue' else: # Must be a bond text = f"Bond {i}: " if 'O-linked' in segment.get('bond_after', ''): text += "ester" elif 'N-Me' in segment.get('bond_after', ''): text += "peptide (N-methylated)" else: text += "peptide" color = 'red' ax_detail.text(0.05, y, text, fontsize=12, color=color) ax_detail.text(0.5, y, f"SMILES: {segment.get('content', '')}", fontsize=10, color='gray') # If cyclic, add connection indicator if sequence.startswith('cyclo('): ax_struct.annotate('', xy=(9.5, y_pos), xytext=(0.5, y_pos), arrowprops=dict(arrowstyle='<->', color='red', lw=2)) ax_struct.text(5, y_pos+0.3, 'Cyclic Connection', ha='center', color='red', fontsize=14) ax_struct.set_title("Peptide Structure Overview", pad=20) ax_detail.set_title("Segment Analysis Breakdown", pad=20) for ax in [ax_struct, ax_detail]: ax.set_xticks([]) ax.set_yticks([]) ax.axis('off') plt.tight_layout() return fig class PeptideStructureGenerator: """Generate 3D structures of peptides using different embedding methods""" @staticmethod def prepare_molecule(smiles): """Prepare molecule with proper hydrogen handling""" mol = Chem.MolFromSmiles(smiles, sanitize=False) if mol is None: raise ValueError("Failed to create molecule from SMILES") for atom in mol.GetAtoms(): atom.UpdatePropertyCache(strict=False) # Sanitize with reduced requirements Chem.SanitizeMol(mol, sanitizeOps=Chem.SANITIZE_FINDRADICALS| Chem.SANITIZE_KEKULIZE| Chem.SANITIZE_SETAROMATICITY| Chem.SANITIZE_SETCONJUGATION| Chem.SANITIZE_SETHYBRIDIZATION| Chem.SANITIZE_CLEANUPCHIRALITY) mol = Chem.AddHs(mol) return mol @staticmethod def get_etkdg_params(attempt=0): """Get ETKDG parameters""" params = AllChem.ETKDGv3() params.randomSeed = -1 params.maxIterations = 200 params.numThreads = 4 # Reduced for web interface params.useBasicKnowledge = True params.enforceChirality = True params.useExpTorsionAnglePrefs = True params.useSmallRingTorsions = True params.useMacrocycleTorsions = True params.ETversion = 2 params.pruneRmsThresh = -1 params.embedRmsThresh = 0.5 if attempt > 10: params.bondLength = 1.5 + (attempt - 10) * 0.02 params.useExpTorsionAnglePrefs = False return params def generate_structure_etkdg(self, smiles, max_attempts=20): """Generate 3D structure using ETKDG without UFF optimization""" success = False mol = None for attempt in range(max_attempts): try: mol = self.prepare_molecule(smiles) params = self.get_etkdg_params(attempt) if AllChem.EmbedMolecule(mol, params) == 0: success = True break except Exception as e: continue if not success: raise ValueError("Failed to generate structure with ETKDG") return mol def generate_structure_uff(self, smiles, max_attempts=20): """Generate 3D structure using ETKDG followed by UFF optimization""" best_mol = None lowest_energy = float('inf') for attempt in range(max_attempts): try: test_mol = self.prepare_molecule(smiles) params = self.get_etkdg_params(attempt) if AllChem.EmbedMolecule(test_mol, params) == 0: res = AllChem.UFFOptimizeMolecule(test_mol, maxIters=2000, vdwThresh=10.0, confId=0, ignoreInterfragInteractions=True) if res == 0: ff = AllChem.UFFGetMoleculeForceField(test_mol) if ff: current_energy = ff.CalcEnergy() if current_energy < lowest_energy: lowest_energy = current_energy best_mol = Chem.Mol(test_mol) except Exception: continue if best_mol is None: raise ValueError("Failed to generate optimized structure") return best_mol @staticmethod def mol_to_sdf_bytes(mol): """Convert RDKit molecule to SDF file bytes""" sio = StringIO() writer = Chem.SDWriter(sio) writer.write(mol) writer.close() return sio.getvalue().encode('utf-8') def process_input( smiles_input=None, file_obj=None, show_linear=False, show_segment_details=False, generate_3d=False, use_uff=False ): """Process input and create visualizations using PeptideAnalyzer""" analyzer = PeptideAnalyzer() temp_dir = tempfile.mkdtemp() if generate_3d else None structure_files = [] # Handle direct SMILES input if smiles_input: smiles = smiles_input.strip() if not analyzer.is_peptide(smiles): return "Error: Input SMILES does not appear to be a peptide structure.", None, None, [] try: # Preprocess to protect complex residues pre_smiles, protected_residues = analyzer.preprocess_complex_residues(smiles) # Report protected residues in summary if any protected_info = None if protected_residues: protected_info = [res['type'] for res in protected_residues] mol = Chem.MolFromSmiles(smiles) if mol is None: return "Error: Invalid SMILES notation.", None, None, [] if generate_3d: generator = PeptideStructureGenerator() try: # Generate ETKDG structure mol_etkdg = generator.generate_structure_etkdg(smiles) etkdg_path = os.path.join(temp_dir, "structure_etkdg.sdf") writer = Chem.SDWriter(etkdg_path) writer.write(mol_etkdg) writer.close() structure_files.append(etkdg_path) # Generate UFF structure if requested if use_uff: mol_uff = generator.generate_structure_uff(smiles) uff_path = os.path.join(temp_dir, "structure_uff.sdf") writer = Chem.SDWriter(uff_path) writer.write(mol_uff) writer.close() structure_files.append(uff_path) except Exception as e: return f"Error generating 3D structures: {str(e)}", None, None, [] analysis = analyzer.analyze_structure(smiles) three_letter = analysis['three_letter'] one_letter = analysis['one_letter'] is_cyclic = analysis['is_cyclic'] # Only include segment analysis in output if requested if show_segment_details: segments = analyzer.split_on_bonds(smiles) sequence_parts = [] output_text = "" output_text += "Segment Analysis:\n" for i, segment in enumerate(segments): output_text += f"\nSegment {i}:\n" output_text += f"Content: {segment['content']}\n" output_text += f"Bond before: {segment.get('bond_before', 'None')}\n" output_text += f"Bond after: {segment.get('bond_after', 'None')}\n" residue, mods = analyzer.identify_residue(segment) if residue: if mods: sequence_parts.append(f"{residue}({','.join(mods)})") else: sequence_parts.append(residue) output_text += f"Identified as: {residue}\n" output_text += f"Modifications: {mods}\n" else: output_text += f"Warning: Could not identify residue in segment: {segment['content']}\n" output_text += "\n" is_cyclic, peptide_cycles, aromatic_cycles = analyzer.is_cyclic(smiles) three_letter = '-'.join(sequence_parts) one_letter = ''.join(analyzer.three_to_one.get(aa.split('(')[0], 'X') for aa in sequence_parts) else: pass img_cyclic = annotate_cyclic_structure(mol, three_letter) # Create linear representation if requested img_linear = None if show_linear: fig_linear = create_enhanced_linear_viz(three_letter, smiles) buf = BytesIO() fig_linear.savefig(buf, format='png', bbox_inches='tight', dpi=300) buf.seek(0) img_linear = Image.open(buf) plt.close(fig_linear) summary = "Summary:\n" summary += f"Sequence: {three_letter}\n" summary += f"One-letter code: {one_letter}\n" summary += f"Is Cyclic: {'Yes' if is_cyclic else 'No'}\n" #if is_cyclic: #summary += f"Peptide Cycles: {', '.join(peptide_cycles)}\n" #summary += f"Aromatic Cycles: {', '.join(aromatic_cycles)}\n" if structure_files: summary += "\n3D Structures Generated:\n" for filepath in structure_files: summary += f"- {os.path.basename(filepath)}\n" #return summary, img_cyclic, img_linear, structure_files if structure_files else None return summary, img_cyclic except Exception as e: #return f"Error processing SMILES: {str(e)}", None, None, [] return f"Error processing SMILES: {str(e)}", None # Handle file input if file_obj is not None: try: if hasattr(file_obj, 'name'): with open(file_obj.name, 'r') as f: content = f.read() else: content = file_obj.decode('utf-8') if isinstance(file_obj, bytes) else str(file_obj) output_text = "" for line in content.splitlines(): smiles = line.strip() if not smiles: continue if not analyzer.is_peptide(smiles): output_text += f"Skipping non-peptide SMILES: {smiles}\n" continue try: # Process the structure result = analyzer.analyze_structure(smiles) output_text += f"\nSummary for SMILES: {smiles}\n" output_text += f"Sequence: {result['three_letter']}\n" output_text += f"One-letter code: {result['one_letter']}\n" output_text += f"Is Cyclic: {'Yes' if result['is_cyclic'] else 'No'}\n" output_text += "-" * 50 + "\n" except Exception as e: output_text += f"Error processing SMILES: {smiles} - {str(e)}\n" output_text += "-" * 50 + "\n" return output_text, None, None, [] except Exception as e: return f"Error processing file: {str(e)}", None, None, [] return ( output_text or "No analysis done.", img_cyclic if 'img_cyclic' in locals() else None, #img_linear if 'img_linear' in locals() else None, #structure_files if structure_files else [] ) """ iface = gr.Interface( fn=process_input, inputs=[ gr.Textbox( label="Enter SMILES string", placeholder="Enter SMILES notation of peptide...", lines=2 ),], #gr.File( #label="Or upload a text file with SMILES", #file_types=[".txt"] #)], outputs=[ gr.Textbox( label="Analysis Results", lines=10 ), gr.Image( label="2D Structure with Annotations", type="pil" ), ], title="Peptide Structure Analyzer and Visualizer", description=''' Analyze and visualize peptide structures from SMILES notation: 1. Validates if the input is a peptide structure 2. Determines if the peptide is cyclic 3. Parses the amino acid sequence 4. Creates 2D structure visualization with residue annotations 5. Optional linear representation 6. Optional 3D structure generation (ETKDG and UFF methods) Input: Either enter a SMILES string directly or upload a text file containing SMILES strings Example SMILES strings (copy and paste): ``` CC(C)C[C@@H]1NC(=O)[C@@H](CC(C)C)N(C)C(=O)[C@@H](C)N(C)C(=O)[C@H](Cc2ccccc2)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H]2CCCN2C1=O ``` ``` C(C)C[C@@H]1NC(=O)[C@@H]2CCCN2C(=O)[C@@H](CC(C)C)NC(=O)[C@@H](CC(C)C)N(C)C(=O)[C@H](C)NC(=O)[C@H](Cc2ccccc2)NC1=O ``` ``` CC(C)C[C@H]1C(=O)N(C)[C@@H](Cc2ccccc2)C(=O)NCC(=O)N[C@H](C(=O)N2CCCCC2)CC(=O)N(C)CC(=O)N[C@@H]([C@@H](C)O)C(=O)N(C)[C@@H](C)C(=O)N[C@@H](COC(C)(C)C)C(=O)N(C)[C@@H](Cc2ccccc2)C(=O)N1C ``` ''', flagging_mode="never" ) if __name__ == "__main__": iface.launch(share=True) """ from fastapi import FastAPI import gradio as gr # 1) Make a FastAPI with no OpenAPI/docs routes app = FastAPI(docs_url=None, redoc_url=None, openapi_url=None) # 2) Build your Interface as before iface = gr.Interface( fn=process_input, inputs=[ gr.Textbox(label="Enter SMILES string", lines=2) ], outputs=[ gr.Textbox(label="Analysis Results", lines=10), gr.Image(label="2D Structure with Annotations", type="pil"), ], title="Peptide Structure Analyzer and Visualizer", flagging_mode="never" ) # 3) Mount it at “/” app = gr.mount_gradio_app(app, iface, path="/") if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=7860)