Update app.py
Browse files
app.py
CHANGED
|
@@ -1,31 +1,9 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
from transformers import pipeline
|
| 3 |
-
|
| 4 |
-
# App Title
|
| 5 |
-
st.set_page_config(page_title="ML Assistant with Replit LLM", layout="wide")
|
| 6 |
-
st.title("🤖 ML Assistant with Replit LLM")
|
| 7 |
-
st.write("Interact with the Replit LLM for machine learning workflows and AI-driven coding assistance.")
|
| 8 |
-
|
| 9 |
-
# Sidebar Configuration
|
| 10 |
-
st.sidebar.title("Configuration")
|
| 11 |
-
api_key = st.sidebar.text_input("Replit LLM API Key", type="password")
|
| 12 |
-
model_name = st.sidebar.text_input("Hugging Face Model Name", "Canstralian/RabbitRedux")
|
| 13 |
-
task_type = st.sidebar.selectbox(
|
| 14 |
-
"Choose a Task",
|
| 15 |
-
["Text Generation", "Pseudocode to Python", "ML Debugging", "Code Optimization"]
|
| 16 |
-
)
|
| 17 |
-
|
| 18 |
-
# Ensure API Key is Provided
|
| 19 |
-
if not api_key:
|
| 20 |
-
st.warning("Please provide your Replit LLM API Key in the sidebar to continue.")
|
| 21 |
-
st.stop()
|
| 22 |
-
|
| 23 |
# Initialize Replit LLM Pipeline
|
| 24 |
try:
|
| 25 |
nlp_pipeline = pipeline("text2text-generation", model=model_name)
|
| 26 |
st.success("Model loaded successfully!")
|
| 27 |
except Exception as e:
|
| 28 |
-
st.error(f"Error loading model: {e}")
|
| 29 |
st.stop()
|
| 30 |
|
| 31 |
# Input Section
|
|
@@ -47,42 +25,20 @@ if st.button("Generate Output"):
|
|
| 47 |
except Exception as e:
|
| 48 |
st.error(f"An error occurred: {e}")
|
| 49 |
|
| 50 |
-
#
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
if task_type == "Text Generation":
|
| 54 |
-
st.info("Use the input box to generate text-based output.")
|
| 55 |
-
elif task_type == "Pseudocode to Python":
|
| 56 |
-
st.info("Provide pseudocode, and the Replit LLM will attempt to generate Python code.")
|
| 57 |
-
example = st.button("Show Example")
|
| 58 |
-
if example:
|
| 59 |
-
st.code("""
|
| 60 |
-
# Pseudocode
|
| 61 |
-
FOR each item IN list:
|
| 62 |
-
IF item > threshold:
|
| 63 |
-
PRINT "Above Threshold"
|
| 64 |
-
|
| 65 |
-
# Expected Python Output
|
| 66 |
-
for item in my_list:
|
| 67 |
-
if item > threshold:
|
| 68 |
-
print("Above Threshold")
|
| 69 |
-
""")
|
| 70 |
-
elif task_type == "ML Debugging":
|
| 71 |
-
st.info("Describe your ML pipeline error for debugging suggestions.")
|
| 72 |
-
elif task_type == "Code Optimization":
|
| 73 |
st.info("Paste your Python code for optimization recommendations.")
|
| 74 |
user_code = st.text_area("Paste your Python code", height=200)
|
| 75 |
if st.button("Optimize Code"):
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
st.
|
| 88 |
-
st.write("Powered by [Replit LLM](https://replit.com) and [Hugging Face](https://huggingface.co).")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# Initialize Replit LLM Pipeline
|
| 2 |
try:
|
| 3 |
nlp_pipeline = pipeline("text2text-generation", model=model_name)
|
| 4 |
st.success("Model loaded successfully!")
|
| 5 |
except Exception as e:
|
| 6 |
+
st.error(f"Error loading model: {e}. Please verify the model name or your internet connection.")
|
| 7 |
st.stop()
|
| 8 |
|
| 9 |
# Input Section
|
|
|
|
| 25 |
except Exception as e:
|
| 26 |
st.error(f"An error occurred: {e}")
|
| 27 |
|
| 28 |
+
# Handling Code Optimization:
|
| 29 |
+
if task_type == "Code Optimization":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
st.info("Paste your Python code for optimization recommendations.")
|
| 31 |
user_code = st.text_area("Paste your Python code", height=200)
|
| 32 |
if st.button("Optimize Code"):
|
| 33 |
+
if user_code.strip() == "":
|
| 34 |
+
st.warning("Please paste valid Python code to optimize.")
|
| 35 |
+
else:
|
| 36 |
+
with st.spinner("Analyzing and optimizing..."):
|
| 37 |
+
try:
|
| 38 |
+
optimization_prompt = f"Optimize the following Python code:\n\n{user_code}"
|
| 39 |
+
output = nlp_pipeline(optimization_prompt)
|
| 40 |
+
optimized_code = output[0]["generated_text"]
|
| 41 |
+
st.subheader("Optimized Code")
|
| 42 |
+
st.code(optimized_code)
|
| 43 |
+
except Exception as e:
|
| 44 |
+
st.error(f"An error occurred while optimizing code: {e}")
|
|
|