File size: 5,297 Bytes
42d7985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import random
import os

import spaces
import torch
from PIL import Image
import huggingface_hub
import gradio as gr

from src.pipeline_flux_nag import NAGFluxPipeline
from src.transformer_flux import NAGFluxTransformer2DModel


theme = gr.themes.Base(
    font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
)

transformer = NAGFluxTransformer2DModel.from_pretrained(
    "black-forest-labs/FLUX.1-dev",
    subfolder="transformer",
    torch_dtype=torch.bfloat16,
)
pipe = NAGFluxPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev",
    transformer=transformer,
    torch_dtype=torch.bfloat16,
)

device = "cuda"
pipe = pipe.to(device)

examples = [
    ["Portrait of AI researcher.", "Glasses.", 5],
    ["A beautiful cyborg.", "Robot.", 5],
    ["Minimalist abstract line drawing: face portrait of a girl with long hair.", "Complex, detail.", 5],
    ["A baby phoenix made of fire and flames is born from the smoking ashes.", "Low resolution, blurry, lack of details, illustration, cartoon, painting.", 5],
    ["A tiny astronaut hatching from an egg on the moon.", "Low resolution, blurry, lack of details, illustration, cartoon, painting.", 5]
]

@spaces.GPU
def sample(
        prompt,
        negative_prompt=None, guidance_scale=3.5,
        nag_negative_prompt=None, nag_scale=5.0,
        num_inference_steps=25,
        seed=2025, randomize_seed=False,
        compare=True,
):
    prompt = prompt.strip()
    negative_prompt = negative_prompt.strip() if negative_prompt and negative_prompt.strip() else None
    guidance_scale = float(guidance_scale)
    num_inference_steps = int(num_inference_steps)
    
    if (randomize_seed):
        seed = random.randint(0, 9007199254740991)
    else:
        seed = int(seed)

    generator = torch.Generator(device="cuda").manual_seed(seed)
    image_nag = pipe(
        prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        nag_negative_prompt=nag_negative_prompt,
        nag_scale=nag_scale,
        generator=generator,
        num_inference_steps=num_inference_steps,
    ).images[0]

    if compare:
        generator = torch.Generator(device="cuda").manual_seed(seed)
        image_normal = pipe(
            prompt,
            negative_prompt=negative_prompt,
            guidance_scale=guidance_scale,
            generator=generator,
            num_inference_steps=num_inference_steps,
        ).images[0]
    else:
        image_normal = Image.new("RGB", image_nag.size, color=(0, 0, 0))

    return (image_normal, image_nag), seed


def sample_example(
        prompt,
        nag_negative_prompt,
        nag_scale,
):
    outputs, seed = sample(
        prompt=prompt,
        nag_negative_prompt=nag_negative_prompt,
        nag_scale=nag_scale,
    )
    return outputs, 3.5, 25, seed, True


css = '''
.gradio-container{
max-width: 768px !important;
margin: 0 auto;
}
'''

with gr.Blocks(css=css, theme=theme) as demo:
    gr.Markdown('''# Normalized Attention Guidance (NAG) Flux-Dev
    Implementation of [Normalized Attention Guidance](https://chendaryen.github.io/NAG.github.io/)
    ''')
    with gr.Group():
        prompt = gr.Textbox(
            label="Prompt",
            max_lines=1,
            placeholder="Enter your prompt",
        )
        nag_negative_prompt = gr.Textbox(
            label="Negative Prompt for NAG",
            value="Low resolution, blurry, lack of details, illustration, cartoon, painting.",
            max_lines=1,
        )
        nag_scale = gr.Slider(label="NAG Scale", minimum=1., maximum=20., step=0.25, value=5.)
        compare = gr.Checkbox(label="Compare with baseline", info="If unchecked, only sample with NAG will be generated.", value=True)
        button = gr.Button("Generate", min_width=120)
        output = gr.ImageSlider(label="Left: Baseline, Right: With NAG", interactive=False)
        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Textbox(label="Negative Prompt", value=None, visible=False)
            guidance_scale = gr.Slider(label="Guidance Scale", minimum=1., maximum=15., step=0.1, value=3.5)
            num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=25)
            seed = gr.Slider(label="Seed", minimum=1, maximum=9007199254740991, step=1, randomize=True)
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

        gr.Examples(
            examples=examples,
            fn=sample_example,
            inputs=[
                prompt,
                nag_negative_prompt,
                nag_scale,
            ],
            outputs=[output, guidance_scale, num_inference_steps, seed, compare],
            cache_examples="lazy",
        )

    gr.on(
        triggers=[
            button.click,
            prompt.submit
        ],
        fn=sample,
        inputs=[
            prompt,
            negative_prompt, guidance_scale,
            nag_negative_prompt, nag_scale,
            num_inference_steps,
            seed, randomize_seed,
            compare,
        ],
        outputs=[output, seed],
    )
if __name__ == "__main__":
    huggingface_hub.login(os.getenv('HF_TOKEN'))
    demo.launch(share=True)