Spaces:
Runtime error
Runtime error
Create seq_aligner.py
Browse files- seq_aligner.py +196 -0
seq_aligner.py
ADDED
|
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2022 Google LLC
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
import torch
|
| 15 |
+
import numpy as np
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class ScoreParams:
|
| 19 |
+
|
| 20 |
+
def __init__(self, gap, match, mismatch):
|
| 21 |
+
self.gap = gap
|
| 22 |
+
self.match = match
|
| 23 |
+
self.mismatch = mismatch
|
| 24 |
+
|
| 25 |
+
def mis_match_char(self, x, y):
|
| 26 |
+
if x != y:
|
| 27 |
+
return self.mismatch
|
| 28 |
+
else:
|
| 29 |
+
return self.match
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def get_matrix(size_x, size_y, gap):
|
| 33 |
+
matrix = []
|
| 34 |
+
for i in range(len(size_x) + 1):
|
| 35 |
+
sub_matrix = []
|
| 36 |
+
for j in range(len(size_y) + 1):
|
| 37 |
+
sub_matrix.append(0)
|
| 38 |
+
matrix.append(sub_matrix)
|
| 39 |
+
for j in range(1, len(size_y) + 1):
|
| 40 |
+
matrix[0][j] = j*gap
|
| 41 |
+
for i in range(1, len(size_x) + 1):
|
| 42 |
+
matrix[i][0] = i*gap
|
| 43 |
+
return matrix
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def get_matrix(size_x, size_y, gap):
|
| 47 |
+
matrix = np.zeros((size_x + 1, size_y + 1), dtype=np.int32)
|
| 48 |
+
matrix[0, 1:] = (np.arange(size_y) + 1) * gap
|
| 49 |
+
matrix[1:, 0] = (np.arange(size_x) + 1) * gap
|
| 50 |
+
return matrix
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def get_traceback_matrix(size_x, size_y):
|
| 54 |
+
matrix = np.zeros((size_x + 1, size_y +1), dtype=np.int32)
|
| 55 |
+
matrix[0, 1:] = 1
|
| 56 |
+
matrix[1:, 0] = 2
|
| 57 |
+
matrix[0, 0] = 4
|
| 58 |
+
return matrix
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def global_align(x, y, score):
|
| 62 |
+
matrix = get_matrix(len(x), len(y), score.gap)
|
| 63 |
+
trace_back = get_traceback_matrix(len(x), len(y))
|
| 64 |
+
for i in range(1, len(x) + 1):
|
| 65 |
+
for j in range(1, len(y) + 1):
|
| 66 |
+
left = matrix[i, j - 1] + score.gap
|
| 67 |
+
up = matrix[i - 1, j] + score.gap
|
| 68 |
+
diag = matrix[i - 1, j - 1] + score.mis_match_char(x[i - 1], y[j - 1])
|
| 69 |
+
matrix[i, j] = max(left, up, diag)
|
| 70 |
+
if matrix[i, j] == left:
|
| 71 |
+
trace_back[i, j] = 1
|
| 72 |
+
elif matrix[i, j] == up:
|
| 73 |
+
trace_back[i, j] = 2
|
| 74 |
+
else:
|
| 75 |
+
trace_back[i, j] = 3
|
| 76 |
+
return matrix, trace_back
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def get_aligned_sequences(x, y, trace_back):
|
| 80 |
+
x_seq = []
|
| 81 |
+
y_seq = []
|
| 82 |
+
i = len(x)
|
| 83 |
+
j = len(y)
|
| 84 |
+
mapper_y_to_x = []
|
| 85 |
+
while i > 0 or j > 0:
|
| 86 |
+
if trace_back[i, j] == 3:
|
| 87 |
+
x_seq.append(x[i-1])
|
| 88 |
+
y_seq.append(y[j-1])
|
| 89 |
+
i = i-1
|
| 90 |
+
j = j-1
|
| 91 |
+
mapper_y_to_x.append((j, i))
|
| 92 |
+
elif trace_back[i][j] == 1:
|
| 93 |
+
x_seq.append('-')
|
| 94 |
+
y_seq.append(y[j-1])
|
| 95 |
+
j = j-1
|
| 96 |
+
mapper_y_to_x.append((j, -1))
|
| 97 |
+
elif trace_back[i][j] == 2:
|
| 98 |
+
x_seq.append(x[i-1])
|
| 99 |
+
y_seq.append('-')
|
| 100 |
+
i = i-1
|
| 101 |
+
elif trace_back[i][j] == 4:
|
| 102 |
+
break
|
| 103 |
+
mapper_y_to_x.reverse()
|
| 104 |
+
return x_seq, y_seq, torch.tensor(mapper_y_to_x, dtype=torch.int64)
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def get_mapper(x: str, y: str, tokenizer, max_len=77):
|
| 108 |
+
x_seq = tokenizer.encode(x)
|
| 109 |
+
y_seq = tokenizer.encode(y)
|
| 110 |
+
score = ScoreParams(0, 1, -1)
|
| 111 |
+
matrix, trace_back = global_align(x_seq, y_seq, score)
|
| 112 |
+
mapper_base = get_aligned_sequences(x_seq, y_seq, trace_back)[-1]
|
| 113 |
+
alphas = torch.ones(max_len)
|
| 114 |
+
alphas[: mapper_base.shape[0]] = mapper_base[:, 1].ne(-1).float()
|
| 115 |
+
mapper = torch.zeros(max_len, dtype=torch.int64)
|
| 116 |
+
mapper[:mapper_base.shape[0]] = mapper_base[:, 1]
|
| 117 |
+
mapper[mapper_base.shape[0]:] = len(y_seq) + torch.arange(max_len - len(y_seq))
|
| 118 |
+
return mapper, alphas
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def get_refinement_mapper(prompts, tokenizer, max_len=77):
|
| 122 |
+
x_seq = prompts[0]
|
| 123 |
+
mappers, alphas = [], []
|
| 124 |
+
for i in range(1, len(prompts)):
|
| 125 |
+
mapper, alpha = get_mapper(x_seq, prompts[i], tokenizer, max_len)
|
| 126 |
+
mappers.append(mapper)
|
| 127 |
+
alphas.append(alpha)
|
| 128 |
+
return torch.stack(mappers), torch.stack(alphas)
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def get_word_inds(text: str, word_place: int, tokenizer):
|
| 132 |
+
split_text = text.split(" ")
|
| 133 |
+
if type(word_place) is str:
|
| 134 |
+
word_place = [i for i, word in enumerate(split_text) if word_place == word]
|
| 135 |
+
elif type(word_place) is int:
|
| 136 |
+
word_place = [word_place]
|
| 137 |
+
out = []
|
| 138 |
+
if len(word_place) > 0:
|
| 139 |
+
words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1]
|
| 140 |
+
cur_len, ptr = 0, 0
|
| 141 |
+
|
| 142 |
+
for i in range(len(words_encode)):
|
| 143 |
+
cur_len += len(words_encode[i])
|
| 144 |
+
if ptr in word_place:
|
| 145 |
+
out.append(i + 1)
|
| 146 |
+
if cur_len >= len(split_text[ptr]):
|
| 147 |
+
ptr += 1
|
| 148 |
+
cur_len = 0
|
| 149 |
+
return np.array(out)
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
def get_replacement_mapper_(x: str, y: str, tokenizer, max_len=77):
|
| 153 |
+
words_x = x.split(' ')
|
| 154 |
+
words_y = y.split(' ')
|
| 155 |
+
if len(words_x) != len(words_y):
|
| 156 |
+
raise ValueError(f"attention replacement edit can only be applied on prompts with the same length"
|
| 157 |
+
f" but prompt A has {len(words_x)} words and prompt B has {len(words_y)} words.")
|
| 158 |
+
inds_replace = [i for i in range(len(words_y)) if words_y[i] != words_x[i]]
|
| 159 |
+
inds_source = [get_word_inds(x, i, tokenizer) for i in inds_replace]
|
| 160 |
+
inds_target = [get_word_inds(y, i, tokenizer) for i in inds_replace]
|
| 161 |
+
mapper = np.zeros((max_len, max_len))
|
| 162 |
+
i = j = 0
|
| 163 |
+
cur_inds = 0
|
| 164 |
+
while i < max_len and j < max_len:
|
| 165 |
+
if cur_inds < len(inds_source) and inds_source[cur_inds][0] == i:
|
| 166 |
+
inds_source_, inds_target_ = inds_source[cur_inds], inds_target[cur_inds]
|
| 167 |
+
if len(inds_source_) == len(inds_target_):
|
| 168 |
+
mapper[inds_source_, inds_target_] = 1
|
| 169 |
+
else:
|
| 170 |
+
ratio = 1 / len(inds_target_)
|
| 171 |
+
for i_t in inds_target_:
|
| 172 |
+
mapper[inds_source_, i_t] = ratio
|
| 173 |
+
cur_inds += 1
|
| 174 |
+
i += len(inds_source_)
|
| 175 |
+
j += len(inds_target_)
|
| 176 |
+
elif cur_inds < len(inds_source):
|
| 177 |
+
mapper[i, j] = 1
|
| 178 |
+
i += 1
|
| 179 |
+
j += 1
|
| 180 |
+
else:
|
| 181 |
+
mapper[j, j] = 1
|
| 182 |
+
i += 1
|
| 183 |
+
j += 1
|
| 184 |
+
|
| 185 |
+
return torch.from_numpy(mapper).float()
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
def get_replacement_mapper(prompts, tokenizer, max_len=77):
|
| 190 |
+
x_seq = prompts[0]
|
| 191 |
+
mappers = []
|
| 192 |
+
for i in range(1, len(prompts)):
|
| 193 |
+
mapper = get_replacement_mapper_(x_seq, prompts[i], tokenizer, max_len)
|
| 194 |
+
mappers.append(mapper)
|
| 195 |
+
return torch.stack(mappers)
|
| 196 |
+
|