File size: 48,119 Bytes
b1c16fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
#!/usr/bin/env python
import os
import shutil
import json
import torch
import re
import requests
import transformers
import chardet
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.models.llama.configuration_llama import LlamaConfig
from huggingface_hub import hf_hub_download
import gradio as gr

# Solve permission issues
os.environ["MPLCONFIGDIR"] = "/tmp/matplotlib"
os.environ["HOME"] = "/tmp"
os.environ["XDG_CACHE_HOME"] = "/tmp/.cache"
os.environ["HF_HOME"] = "/tmp/huggingface"
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface/transformers"
os.environ["HF_DATASETS_CACHE"] = "/tmp/huggingface/datasets"
os.environ["HF_METRICS_CACHE"] = "/tmp/huggingface/metrics"
os.environ["GRADIO_FLAGGING_DIR"] = "/tmp/flagged"
os.environ["SENTENCE_TRANSFORMERS_HOME"] = "/tmp/sentence_transformers"
os.environ["HF_HUB_CACHE"] = "/tmp/huggingface/hf_cache"
os.environ["HF_HUB_DOWNLOAD_TIMEOUT"] = "60"

# Load Required Modules 
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Chroma, FAISS
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain.llms import HuggingFacePipeline
from langchain.chat_models import ChatOpenAI
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain_community.document_loaders import PyPDFLoader, TextLoader, UnstructuredWordDocumentLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains.summarize import load_summarize_chain
from tempfile import mkdtemp
from langchain.schema import AIMessage
from datetime import datetime, timedelta
from zoneinfo import ZoneInfo
from dateutil import parser as date_parser
import numexpr as ne
import pandas as pd

# Multi-Agent Imports 
from serpapi import GoogleSearch
# CrewAI Section: completely use CrewAI's Agent, Task, Crew and @tool decorator
from crewai import Crew, Agent, Task, Process
from crewai.tools import tool
from geopy.geocoders import Nominatim
from timezonefinder import TimezoneFinder
from langchain_experimental.agents import create_pandas_dataframe_agent


session_retriever = None
session_qa_chain = None
csv_dataframe = None  # CSV tool will use this

# Safe Result Formatter 
def safe_format_result(result) -> str:
    try:
        if hasattr(result, "agent_name") and hasattr(result, "output"):
            return f"[Agent: {result.agent_name}]\n{result.output}"
        elif isinstance(result, str):
            return result
        elif isinstance(result, dict):
            return json.dumps(result, indent=2)
        elif isinstance(result, list):
            return "\n".join(str(r) for r in result)
        else:
            return str(result)
    except Exception as e:
        return f"Error formatting result: {e}"

# Model and Device Setup 
if torch.backends.mps.is_available():
    device = "mps"
elif torch.cuda.is_available():
    device = "cuda"
else:
    device = "cpu"
print(f"Using device => {device}")

hf_token = os.environ.get("HF_TOKEN")
openai_api_key = os.environ.get("OPENAI_API_KEY")
model_id = "ChienChung/my-llama-1b"

config_path = hf_hub_download(
    repo_id=model_id,
    filename="config.json",
    use_auth_token=hf_token,
    cache_dir="/tmp/huggingface"
)
with open(config_path, "r", encoding="utf-8") as f:
    config_dict = json.load(f)
if "rope_scaling" in config_dict:
    config_dict["rope_scaling"] = {"type": "dynamic", "factor": config_dict["rope_scaling"].get("factor", 32.0)}
model_config = LlamaConfig.from_dict(config_dict)
model_config.trust_remote_code = True

print("Loading Llama model...")
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    config=model_config,
    trust_remote_code=True,
    use_auth_token=hf_token,
    cache_dir="/tmp/huggingface"
)
model.to(device)
print("Model loaded!")

print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(
    model_id,
    trust_remote_code=True,
    use_auth_token=hf_token,
    cache_dir="/tmp/huggingface"
)
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token
print("Tokenizer loaded!")

query_pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    torch_dtype=torch.float16 if device == "cuda" else torch.float32,
    device_map="auto" if device != "cpu" else None,
    do_sample=False,
    temperature=0.0,
    max_new_tokens=200,
    return_full_text=False
)

# Chroma DB and Document Retrieval Setup 
print("Loading Chroma DB for Biden Speech...")
if not os.path.exists("/tmp/chroma_db"):
    shutil.copytree("./chroma_db", "/tmp/chroma_db")
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
vectordb = Chroma(persist_directory="/tmp/chroma_db", embedding_function=embeddings)
retriever = vectordb.as_retriever()

custom_prompt = PromptTemplate(
    input_variables=["context", "question"],
    template="""You are a helpful AI assistant. Use only the text from the context below to answer the user's question.
If the answer is not in the context, say "No relevant info found."
If the question is not in the context, say "No relevant info found."

Return only the final answer in one to three sentences.
Do not restate the question or context.
Do not include these instructions in your final output.

Context:
{context}

Question: {question}

Answer:
"""
)

llm_local = HuggingFacePipeline(pipeline=query_pipeline)
llm_gpt4 = ChatOpenAI(model_name="gpt-4o-mini", temperature=0.2, openai_api_key=openai_api_key)
crew_llm = ChatOpenAI(
    model_name="gpt-4o-mini",
    temperature=0.2,
    openai_api_key=openai_api_key
)

memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
qa_gpt = ConversationalRetrievalChain.from_llm(
    llm=llm_gpt4,
    retriever=retriever,
    memory=memory,
    combine_docs_chain_kwargs={"prompt": custom_prompt}
)

# Helper Function: Extract file path from uploaded file
def get_file_path(file):
    if isinstance(file, str):
        return file
    elif isinstance(file, dict):
        # Prefer using the "data" key, then "name"
        return file.get("data", file.get("name", None))
    elif hasattr(file, "save"):
        temp_dir = mkdtemp()
        file_path = os.path.join(temp_dir, file.name)
        file.save(file_path)
        return file_path
    else:
        return None

# Original functionalities (Tabs 1-4) functions 
def rag_llama_qa(query):
    output = RetrievalQA.from_chain_type(
        llm=llm_local,
        chain_type="stuff",
        retriever=retriever,
        return_source_documents=False,
        chain_type_kwargs={"prompt": custom_prompt}
    ).run(query)
    lower_text = output.lower()
    idx = lower_text.find("answer:")
    return output[idx + len("answer:"):].strip() if idx != -1 else output

def rag_gpt4_qa(query):
    return qa_gpt.run(query)

def upload_and_chat(file, query):
    file_path = get_file_path(file)
    if file_path is None:
        return "Unable to obtain the uploaded file path."
    if file_path.lower().endswith(".pdf"):
        loader = PyPDFLoader(file_path)
    elif file_path.lower().endswith(".docx"):
        loader = UnstructuredWordDocumentLoader(file_path)
    else:
        loader = TextLoader(file_path)
    docs = loader.load()
    chunks = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50).split_documents(docs)
    db = FAISS.from_documents(chunks, embeddings)
    temp_retriever = db.as_retriever()
    qa_temp = RetrievalQA.from_chain_type(
        llm=llm_gpt4,
        chain_type="stuff",
        retriever=temp_retriever,
        return_source_documents=False,
        chain_type_kwargs={"prompt": custom_prompt}
    )
    return qa_temp.run(query)

initial_prompt = PromptTemplate(
    input_variables=["text"],
    template="""Write a concise and structured summary of the following content. Focus on capturing the main ideas and key details:

{text}

--- Summary ---
"""
)
refine_prompt = PromptTemplate(
    input_variables=["existing_answer", "text"],
    template="""You already have an existing summary:
{existing_answer}

Refine the summary based on the new content below. Add or update information only if it's relevant. Keep it concise:

{text}

--- Refined Summary ---
"""
)

def document_summarize(file):
    file_path = get_file_path(file)
    if file_path is None:
        return "Unable to obtain the uploaded file."
    if file_path.lower().endswith(".pdf"):
        loader = PyPDFLoader(file_path)
    elif file_path.lower().endswith(".docx"):
        loader = UnstructuredWordDocumentLoader(file_path)
    else:
        loader = TextLoader(file_path)
    docs = loader.load()
    summarize_chain = load_summarize_chain(llm_gpt4, chain_type="refine", question_prompt=initial_prompt, refine_prompt=refine_prompt)
    summary = summarize_chain.invoke(docs)
    return summary['output_text']

def csv_agent(file, query):
    file_path = get_file_path(file)
    if file_path is None:
        return "Unable to obtain the uploaded CSV file."
    try:
        with open(file_path, 'rb') as f:
            result = chardet.detect(f.read())
            encoding = result['encoding']
        df = pd.read_csv(file_path, encoding=encoding)
    except Exception as e:
        return f"Error reading CSV: {e}"
    safe_dict = {"df": df}
    try:
        result = ne.evaluate(query, local_dict=safe_dict)
        return str(result)
    except Exception as e:
        return f"Query error: {e}"

def search_web(query):
    if isinstance(query, dict):
        query = query.get("query", "")
    api_key = os.environ.get("SERPAPI_API_KEY")
    if not api_key:
        return "SERPAPI_API_KEY not set. Please set the environment variable."
    params = {"engine": "google", "q": query, "api_key": api_key, "num": 5}
    search = GoogleSearch(params)
    results = search.get_dict()
    if "organic_results" in results:
        raw_output = ""
        for result in results["organic_results"]:
            title = result.get("title", "No Title")
            link = result.get("link", "No Link")
            snippet = result.get("snippet", "No Snippet")
            raw_output += f"Title: {title}\nLink: {link}\nSnippet: {snippet}\n\n"
        prompt = "Summarize the following search results in a concise, human-friendly way:\n" + raw_output
        summarized = _general_chat(prompt)
        return summarized if summarized else raw_output.strip()
    else:
        return "No results found."

def uploaded_qa(file, query):
    file_path = get_file_path(file)
    if file_path is None:
        return "Unable to obtain the uploaded file path."
    if file_path.lower().endswith(".pdf"):
        loader = PyPDFLoader(file_path)
    elif file_path.lower().endswith(".docx"):
        loader = UnstructuredWordDocumentLoader(file_path)
    else:
        loader = TextLoader(file_path)
    docs = loader.load()
    chunks = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50).split_documents(docs)
    db = FAISS.from_documents(chunks, embeddings)
    temp_retriever = db.as_retriever()
    qa_temp = RetrievalQA.from_chain_type(
        llm=llm_gpt4,
        chain_type="stuff",
        retriever=temp_retriever,
        return_source_documents=False,
        chain_type_kwargs={"prompt": custom_prompt}
    )
    return qa_temp.run(query)

# CrewAI Multi-Agent System (Tab 5) 
# Completely abandon langchain.agents.Tool and use CrewAI's @tool decorator to define tools
from pydantic import BaseModel
class SimpleQuery(BaseModel):
    query: str

def _general_chat(query: str) -> str:
    try:
        response = llm_gpt4.invoke(query)
        if isinstance(response, AIMessage):
            response = response.content  # Extract the actual string
        if any(kw in response.lower() for kw in ["i'm not sure", "i don't know", "no information", "can't find"]):
            return _search_web_tool(query)
        return response
    except Exception as e:
        return f"General chat error: {e}"
@tool("general_chat")
def general_chat_tool(query: str) -> str:
    """General assistant: Answer general questions without relying on documents."""
    try:
        response = llm_gpt4.invoke(query)
        if isinstance(response, AIMessage):
            response = response.content  # Extract the actual string
        if any(kw in response.lower() for kw in ["i'm not sure", "i don't know", "no information", "can't find"]):
            return search_web(query)
        return response
    except Exception as e:
        return f"General chat error: {e}"

def location_to_timezone(location: str) -> str:
    try:
        geo = Nominatim(user_agent="time_agent_demo")
        loc = geo.geocode(location)
        if not loc:
            return "Europe/London"
        tf = TimezoneFinder()
        return tf.timezone_at(lng=loc.longitude, lat=loc.latitude) or "Europe/London"
    except Exception:
        return "Europe/London"
        
def get_time_tool(query: str) -> str:

    # use GPT to find location keyword
    try:
        location_prompt = f"""
        You are a location extractor. Given a user's query about time or date, return the location mentioned in it. If not found, return "London".

        Examples:
        - "What's the time in Tokyo now?" → Tokyo
        - "今天台北幾點?" → Taipei
        - "現在在紐約幾點?" → New York
        - "今天幾號?" → London
        - "What date is today?" → London

        Now process this query: "{query}"
        """
        location_response = llm_gpt4.invoke(location_prompt)
        if isinstance(location_response, AIMessage):
            location = location_response.content.strip()
        else:
            location = str(location_response).strip()
    except Exception as e:
        location = "London"

    location_key = location.lower()
    tz_str = location_to_timezone(location)
    now = datetime.now(ZoneInfo(tz_str))

    # return time or date
    q_lower = query.lower()
    if any(k in q_lower for k in ["date", "幾號", "today", "day"]):
        return now.strftime(f"The date in {location.title()} is %B %d, %Y (%A).")
    elif any(k in q_lower for k in ["time", "幾點", "現在"]):
        return now.strftime(f"The time in {location.title()} is %I:%M %p.")
    else:
        return now.strftime(f"The local time in {location.title()} is %I:%M %p on %B %d, %Y.")

@tool("time_tl")
def time_tool(query: str) -> str:
    """Time Agent: Answer time or date queries worldwide using LLM + GeoLocator + TimezoneFinder."""
    # use GPT to find location keyword
    try:
        location_prompt = f"""
        You are a location extractor. Given a user's query about time or date, return the location mentioned in it. If not found, return "London".

        Examples:
        - "What's the time in Tokyo now?" → Tokyo
        - "今天台北幾點?" → Taipei
        - "現在在紐約幾點?" → New York
        - "今天幾號?" → London
        - "What date is today?" → London

        Now process this query: "{query}"
        """
        location_response = llm_gpt4.invoke(location_prompt)
        if isinstance(location_response, AIMessage):
            location = location_response.content.strip()
        else:
            location = str(location_response).strip()
    except Exception as e:
        location = "London"

    location_key = location.lower()
    tz_str = zone_map.get(location_key, "Europe/London")
    now = datetime.now(ZoneInfo(tz_str))

    # return time or date
    q_lower = query.lower()
    if any(k in q_lower for k in ["date", "幾號", "today", "day"]):
        return now.strftime(f"The date in {location.title()} is %B %d, %Y (%A).")
    elif any(k in q_lower for k in ["time", "幾點", "現在"]):
        return now.strftime(f"The time in {location.title()} is %I:%M %p.")
    else:
        return now.strftime(f"The local time in {location.title()} is %I:%M %p on %B %d, %Y.")

weather_api_key = os.environ.get("WEATHER_API_KEY")


def get_time_tool2(query: str) -> datetime:
    try:
        # Step 1: 抽出地點
        location_prompt = f"""
        You are a location extractor. Given a user's query about time or date, return the location mentioned in it.
        If not found, return "London".

        Query: "{query}"
        """
        location_response = llm_gpt4.invoke(location_prompt)
        location = location_response.content.strip() if isinstance(location_response, AIMessage) else str(location_response).strip()

        # Step 2: 當地目前時間(加入 DEBUG)
        print(f"[DEBUG] Extracted Location: {location}")
        tz_str = location_to_timezone(location)
        print(f"[DEBUG] Timezone: {tz_str}")
        now = datetime.now(ZoneInfo(tz_str))
        print(f"[DEBUG] Local Time at {location}: {now}")

        # Step 3: 動態 few-shot prompt(每次更新 based on now)
        examples = [
            ("five hours later", now + timedelta(hours=5)),
            ("later", now + timedelta(hours=2)),
            ("soon", now + timedelta(minutes=30)),
            ("shortly", now + timedelta(minutes=15)),
            ("after a while", now + timedelta(hours=1)),
            ("tomorrow at 3pm", now.replace(hour=15, minute=0, second=0) + timedelta(days=1)),
            ("the day after tomorrow at 10am", now.replace(hour=10, minute=0, second=0) + timedelta(days=2)),
            ("last Monday 9am", (now - timedelta(days=(now.weekday() + 7))).replace(hour=9, minute=0, second=0)),
            ("next Monday", (now + timedelta(days=(7 - now.weekday()))).replace(hour=12, minute=0, second=0)),
            ("last Friday", (now - timedelta(days=(now.weekday() - 4 + 7) % 7)).replace(hour=12, minute=0, second=0)),
            ("next Friday", (now + timedelta(days=(4 - now.weekday() + 7) % 7)).replace(hour=12, minute=0, second=0)),
            ("in 10 hours", now + timedelta(hours=10)),
            ("this weekend", (now + timedelta(days=(5 - now.weekday()) % 7)).replace(hour=10, minute=0, second=0)),
            ("next weekend", (now + timedelta(days=((5 - now.weekday()) % 7) + 7)).replace(hour=10, minute=0, second=0)),
            ("下週一下午三點", (now + timedelta(days=(7 - now.weekday() + 0) % 7)).replace(hour=15, minute=0, second=0)),
            ("昨天下午五點", (now - timedelta(days=1)).replace(hour=17, minute=0, second=0)),
            ("昨天早上八點", (now - timedelta(days=1)).replace(hour=8, minute=0, second=0)),
            ("later this evening", now.replace(hour=20, minute=0, second=0)),
            ("現在", now),
            ("last month", (now - timedelta(days=30)).replace(hour=12, minute=0, second=0)),
            ("early tomorrow morning", now.replace(hour=6, minute=0, second=0) + timedelta(days=1)),
            ("in 2 hours", now + timedelta(hours=2)),
            ("in one hour", now + timedelta(hours=1)),
            ("in 30 minutes", now + timedelta(minutes=30)),
            ("in a few minutes", now + timedelta(minutes=10)),
        ]

        # 加入 local time 說明在 Examples 區段
        examples_header = f"""Assume the current local time in {location} is exactly:
**{now.strftime('%Y-%m-%d %H:%M:%S')}** (timezone: {tz_str})

Use this exact time to reason all examples below.
"""
        examples_str = "\n".join([f'User Query: "{q}" → {dt.strftime("%Y-%m-%d %H:%M:%S")}' for q, dt in examples])

        # Step 4: 构建完整 prompt
        # Step 4: 构建完整 prompt
        time_query_prompt = f"""
You are a timezone-aware time reasoner. Based on the user's query, calculate the **exact target time** they are referring to.
Remember: all relative expressions like "later", "in 2 hours", "tomorrow" must be strictly calculated based on the current local time above.
{examples_header}

Please return the result in this **exact format**: `YYYY-MM-DD HH:MM:SS` (24-hour clock, no timezone info).
Only return the time string — no explanation, no extra words.

### Examples:
{examples_str}

### Now process:
User Query: "{query}"

"""

        time_response = llm_gpt4.invoke(time_query_prompt)
        time_str = time_response.content.strip() if isinstance(time_response, AIMessage) else str(time_response).strip()

        # Step 5: 嘗試解析時間
        try:
            target_time = datetime.strptime(time_str, "%Y-%m-%d %H:%M:%S")
            target_time = target_time.replace(tzinfo=ZoneInfo(tz_str))
            return target_time
        except Exception:
            return f"Failed to parse time string from LLM: '{time_str}'"

    except Exception as e:
        return f"Error in retrieving location or time information: {e}"

        
def weather_agent_tool(query: str) -> str:
    """Weather Agent: Return current, hourly, or historical weather info using WeatherAPI."""
    try:
        weather_api_key = os.environ.get("WEATHER_API_KEY")
        if not weather_api_key:
            return "Weather API key not found. Please set WEATHER_API_KEY env variable."

        # Step 1: Extract location
        location_prompt = f"""
        You are a location extractor. Given a user's query about weather, extract the location mentioned in it.
        If not found, return "London".

        Examples:
        - "Is it gonna rain in Tokyo?" → Tokyo
        - "Will it be hot in New York later?" → New York
        - "明天下午高雄會不會下雨?" → Kaohsiung
        - "How’s the weather?" → London

        Query: "{query}"
        """
        location_resp = llm_gpt4.invoke(location_prompt)
        location = location_resp.content.strip() if isinstance(location_resp, AIMessage) else str(location_resp).strip()

        # Step 2: Get timezone and time
        target_dt = get_time_tool2(query)

       # if isinstance(target_dt, str):
       #     target_dt = datetime.strptime(target_dt, "%Y-%m-%d %H:%M:%S")
        if not isinstance(target_dt, datetime):
            return f"Failed to parse the target time from your query. Got: {target_dt}"
        
        tz_str = location_to_timezone(location)
        target_dt = target_dt.replace(tzinfo=ZoneInfo(tz_str))
        now = datetime.now(ZoneInfo(tz_str))  # 用同一時區的 now 去比較!

        # Step 3: Check limits and decide API
        if target_dt < now - timedelta(days=7):
            return "Only supports up to 7 days of historical data."
        elif target_dt > now + timedelta(days=2):
            return "Only supports up to 3 days of forecast."

        if target_dt < now:
            url = f"http://api.weatherapi.com/v1/history.json?key={weather_api_key}&q={location}&dt={target_dt.strftime('%Y-%m-%d')}"
        else:
            url = f"http://api.weatherapi.com/v1/forecast.json?key={weather_api_key}&q={location}&days=3&aqi=no&alerts=no"

        data = requests.get(url).json()
        forecast_hours = []
        if "forecast" in data:
            for day in data["forecast"]["forecastday"]:
                for hour in day["hour"]:
                    forecast_hours.append(hour)
        elif "forecastday" in data:
            forecast_hours = data["forecastday"][0]["hour"]
        else:
            return "No forecast data available."

        # Step 4: Find closest hour
        min_diff = float("inf")
        closest_hour = None
        for hour_data in forecast_hours:
            hour_dt = date_parser.parse(hour_data["time"]).replace(tzinfo=ZoneInfo(tz_str))
            diff = abs((hour_dt - target_dt).total_seconds())
            if diff < min_diff:
                min_diff = diff
                closest_hour = hour_data

        if not closest_hour:
            return f"No hourly data found for {target_dt.strftime('%Y-%m-%d %H:%M')}."

        # Step 5: Generate summary
        condition = closest_hour["condition"]["text"]
        temp = closest_hour["temp_c"]
        feels = closest_hour["feelslike_c"]
        humidity = closest_hour["humidity"]
        chance_rain = closest_hour.get("chance_of_rain", 0)
        hour_str = closest_hour["time"].split(" ")[1]

        summary_prompt = f"""
        Summarise this weather forecast naturally:
        Location: {location}
        Time: {target_dt.strftime('%Y-%m-%d')} at {hour_str}
        Condition: {condition}
        Temp: {temp}°C (Feels like {feels}°C)
        Humidity: {humidity}%
        Chance of rain: {chance_rain}%

        Make it short, friendly, and human-style.
        """
        response = llm_gpt4.invoke(summary_prompt)
        return response.content.strip() if isinstance(response, AIMessage) else str(response)

    except Exception as e:
        return f"Weather Agent Error: {e}"
        

@tool("weather")
def weather_tool(query: str) -> str:
    """Weather Agent: Return current, hourly, or historical weather info using WeatherAPI."""
    try:
        weather_api_key = os.environ.get("WEATHER_API_KEY")
        if not weather_api_key:
            return "Weather API key not found. Please set WEATHER_API_KEY env variable."

        # Step 1: Extract location
        location_prompt = f"""
        You are a location extractor. Given a user's query about weather, extract the location mentioned in it.
        If not found, return "London".

        Examples:
        - "Is it gonna rain in Tokyo?" → Tokyo
        - "Will it be hot in New York later?" → New York
        - "明天下午高雄會不會下雨?" → Kaohsiung
        - "How’s the weather?" → London

        Query: "{query}"
        """
        location_resp = llm_gpt4.invoke(location_prompt)
        location = location_resp.content.strip() if isinstance(location_resp, AIMessage) else str(location_resp).strip()

        # Step 2: Get timezone and time
        target_dt = get_time_tool2(query)

       # if isinstance(target_dt, str):
       #     target_dt = datetime.strptime(target_dt, "%Y-%m-%d %H:%M:%S")
        if not isinstance(target_dt, datetime):
            return f"Failed to parse the target time from your query. Got: {target_dt}"

        tz_str = location_to_timezone(location)
        target_dt = target_dt.replace(tzinfo=ZoneInfo(tz_str))
        now = datetime.now(ZoneInfo(tz_str))  # 用同一時區的 now 去比較!

        # Step 3: Check limits and decide API
        if target_dt < now - timedelta(days=7):
            return "Only supports up to 7 days of historical data."
        elif target_dt > now + timedelta(days=2):
            return "Only supports up to 3 days of forecast."

        if target_dt < now:
            url = f"http://api.weatherapi.com/v1/history.json?key={weather_api_key}&q={location}&dt={target_dt.strftime('%Y-%m-%d')}"
        else:
            url = f"http://api.weatherapi.com/v1/forecast.json?key={weather_api_key}&q={location}&days=3&aqi=no&alerts=no"

        data = requests.get(url).json()
        forecast_hours = []
        if "forecast" in data:
            for day in data["forecast"]["forecastday"]:
                for hour in day["hour"]:
                    forecast_hours.append(hour)
        elif "forecastday" in data:
            forecast_hours = data["forecastday"][0]["hour"]
        else:
            return "No forecast data available."

        # Step 4: Find closest hour
        min_diff = float("inf")
        closest_hour = None
        for hour_data in forecast_hours:
            hour_dt = date_parser.parse(hour_data["time"]).replace(tzinfo=ZoneInfo(tz_str))
            diff = abs((hour_dt - target_dt).total_seconds())
            if diff < min_diff:
                min_diff = diff
                closest_hour = hour_data

        if not closest_hour:
            return f"No hourly data found for {target_dt.strftime('%Y-%m-%d %H:%M')}."

        # Step 5: Generate summary
        condition = closest_hour["condition"]["text"]
        temp = closest_hour["temp_c"]
        feels = closest_hour["feelslike_c"]
        humidity = closest_hour["humidity"]
        chance_rain = closest_hour.get("chance_of_rain", 0)
        hour_str = closest_hour["time"].split(" ")[1]

        summary_prompt = f"""
        Summarise this weather forecast naturally:
        Location: {location}
        Time: {target_dt.strftime('%Y-%m-%d')} at {hour_str}
        Condition: {condition}
        Temp: {temp}°C (Feels like {feels}°C)
        Humidity: {humidity}%
        Chance of rain: {chance_rain}%

        Make it short, friendly, and human-style.
        """
        response = llm_gpt4.invoke(summary_prompt)
        return response.content.strip() if isinstance(response, AIMessage) else str(response)

    except Exception as e:
        return f"Weather Agent Error: {e}"
        
@tool("summarise")
def summarise_tool(query: str) -> str:
    """Summarise: Use document summarisation functionality."""
    global session_retriever, session_qa_chain
    if session_retriever is None:
        return "No document uploaded."
    try:
        docs = session_retriever.get_relevant_documents(query if query.strip() else "summary")
        if not docs:
            return "No relevant content found in the document."
        summarize_chain = load_summarize_chain(llm_gpt4, chain_type="refine", question_prompt=initial_prompt, refine_prompt=refine_prompt)
        summary = summarize_chain.invoke(docs)
        return summary['output_text']
    except Exception as e:
        return f"Summarisation error: {e}"
        
def _calc_tool(query: str) -> str:
    import math
    import re
    try:
        # Handle pure arithmetic expressions (only numbers and symbols)
        if re.fullmatch(r"[0-9\.\+\-\*/%\^\(\)\s]+", query.strip()):
            cleaned = query.strip().replace("^", "**")
            result = ne.evaluate(cleaned)
            return f"The result is: {result}"

        # For expressions containing sin/cos/log etc., automatically apply math + radians
        expr = query.lower()
        expr = re.sub(r'sin\(([^)]+)\)', r'sin(math.radians(\1))', expr)
        expr = re.sub(r'cos\(([^)]+)\)', r'cos(math.radians(\1))', expr)
        expr = re.sub(r'tan\(([^)]+)\)', r'tan(math.radians(\1))', expr)
        expr = expr.replace("^", "**")

        result = eval(expr, {"__builtins__": None}, {
            "math": math, "sin": math.sin, "cos": math.cos, "tan": math.tan,
            "log": math.log10, "sqrt": math.sqrt, "exp": math.exp,
            "pi": math.pi, "e": math.e
        })
        return f"The result is: {result}"
    
    except Exception:
        try:
            # Fallback: ask GPT to calculate and explain briefly in plain English (avoid messy symbols)
            response = llm_gpt4.invoke(f"Please calculate this and explain briefly in plain English: {query}. Avoid math symbols like $ or \\n or \\(.")
            result = response.content if isinstance(response, AIMessage) else response
            result = re.sub(r"\\\[.*?\\\]", "", result)  # Remove \[...\]
            result = re.sub(r"\\\(.*?\\\)", "", result)  # Remove \(...\)
            return result.strip()
        except Exception as e:
            return f"Natural language fallback error: {e}"
        
@tool("python_calc")
def python_calc_tool(query: str) -> str:
    """Python Calculation: Perform basic arithmetic or logical operations."""
    try:
        result = ne.evaluate(query)
        return str(result)
    except Exception as e:
        return f"Calculation error: {e}"
def _search_web_tool(query: str) -> str:
    return search_web(query)
@tool("search_tool")
def search_tool_func(query: str) -> str:
    """Search: Perform web searches using external search engines."""
    return search_web(query)

@tool("uploaded_qa")
def uploaded_qa_tool_func(query: str) -> str:
    """Document QA: Answer questions based on the uploaded document content."""
    global session_qa_chain
    if session_qa_chain is not None:
        try:
            return session_qa_chain.run(query)
        except Exception as e:
            return f"Document QA error: {e}"
    else:
        return "No document uploaded."
        
@tool("csv_agent")
def csv_tool_func(query: str) -> str:
    """CSV Agent: Use natural language to analyse uploaded CSV files."""
    global csv_dataframe
    if csv_dataframe is None:
        return "No CSV file uploaded."
    try:
        agent = create_pandas_dataframe_agent(llm=llm_gpt4, df=csv_dataframe, verbose=True)
        return agent.run(f"Here is the table:\n{csv_dataframe.head().to_string(index=False)}\n\n{query}")
    except Exception as e:
        return f"CSV Agent error: {e}"

# Establish CrewAI agents (for Tab 5 only)
general_agent = Agent(
    role="General Assistant",
    goal="Respond to any general query that is not related to documents or CSV files.",
    backstory="You're an intelligent assistant who answers questions about anything general, such as math, dates, or general knowledge.",
    tools=[general_chat_tool],
    verbose=True
)
summarizer_agent = Agent(
    role="Document Summarizer",
    goal="Summarise the content of the uploaded document.",
    backstory="You are a professional summarisation expert who can identify key points in long documents.",
    tools=[summarise_tool],
    verbose=True
)
document_qa_agent = Agent(
    role="Document QA Specialist",
    goal="Answer questions based on the uploaded document.",
    backstory="You are an expert in document understanding and can accurately extract answers.",
    tools=[uploaded_qa_tool_func],
    verbose=True
)

search_agent = Agent(
    role="Search Expert",
    goal="Search the web and provide relevant information.",
    backstory="You are an expert at finding relevant information from the internet.",
    tools=[search_tool_func],
    verbose=True
)
time_agent = Agent(
    role="Time Assistant",
    goal="Answer current time or date related questions across different time zones.",
    backstory="You're a time-aware agent who can tell time or date in any major city.",
    tools=[time_tool],
    verbose=True
)

weather_agent = Agent(
    role="Weather Expert",
    goal="Answer global weather queries.",
    backstory="You are a weather analyst who provides accurate and real-time weather information for any location.",
    tools=[weather_tool],
    verbose=True
)

math_agent = Agent(
    role="Math Assistant",
    goal="Perform accurate arithmetic or logical calculations.",
    backstory="You are a calculator expert skilled at quick computations.",
    tools=[python_calc_tool],
    verbose=True
)
csv_agent = Agent(
    role="CSV Analyst",
    goal="Analyse tabular data and answer questions about the uploaded CSV file.",
    backstory="You are skilled in interpreting tabular datasets and can extract numerical or logical insights.",
    tools=[csv_tool_func],
    verbose=True
)
router_agent = Agent(
    role="Query Router",
    goal="Determine the most suitable agent or tool to handle the user query.",
    backstory="You are an intelligent query dispatcher that analyses the user's intent and chooses the best AI agent to answer.",
    tools=[python_calc_tool, search_tool_func, csv_tool_func, uploaded_qa_tool_func, summarise_tool, general_chat_tool, time_tool, weather_tool],
    verbose=True
)
router_task = Task(
    description="""
Based on the user's query, decide which agent or tool is best suited to handle it:
- If the query is related to the content of an uploaded file (e.g., 'what is this document about?'), send it to the **Document QA Agent**.
- If the query contains words like 'summarize', 'summary', or 'main points', use the **Summarizer Agent**.
- If the query **includes any numbers or symbols** (like +, -, *, /, %, ^), or **mentions math terms** (like 'calculate', 'how much', 'percent', 'square root', 'log', 'cos', 'sin', etc.), or starts with 'what is', 'what’s', 'how much is', assume it is a **math question** and send it to the **Math Agent**.
- If the user uploaded a CSV file and asks about table content, data trends, or uses words like 'data', 'table', 'csv', 'column', or 'row', send it to the **CSV Agent**.
- If the user asks about current events, trending topics, or online information (e.g., 'What is LangChain?', 'latest news'), send it to the **Search Agent**.
- If the query is about current date, time, or day of week (e.g., 'what is today's date?', 'what time is it?', 'what day is it?', '現在幾點', '今天幾號', '禮拜幾'), send it to the **Time Agent**.
- If the query is about weather, rain, temperature, or forecasts (e.g., "What's the weather in Paris?", "Will it rain tomorrow in London?"), send it to the **Weather Agent**.
- If the question is general and not related to documents, calculations, CSVs, or the internet (e.g., 'Who are you?', 'Tell me a fun fact'), send it to the **General Agent**.
- If none of these apply, use your best judgment to choose the most relevant agent.
""",
    expected_output="The final answer from the selected agent or tool.",
    agent=router_agent,
    input_variables=["query"]
)

crew = Crew(
    agents=[general_agent, summarizer_agent, document_qa_agent, search_agent, math_agent, time_agent, csv_agent, weather_agent],
    tasks=[router_task],
    process=Process.sequential,
    verbose=True,
    llm=crew_llm
)

def multi_agent_chat_advanced(query: str, file=None) -> str:
    global session_retriever, session_qa_chain, csv_dataframe

    # Smart routing without needing uploaded files 
    lower_query = query.lower()

    math_keywords = ["how much", "calculate", "what is", "what’s", "%", "sin", "cos", "log", "sqrt", "^", "*", "/", "+", "-", "="]
    if any(k in lower_query for k in math_keywords):
        return _calc_tool(query)

    date_keywords = ["what date", "today", "what time", "what day", "current time", "date", "現在幾點", "今天幾號", "禮拜幾"]
    if any(k in lower_query for k in date_keywords):
        return get_time_tool(query)
    weather_keywords = ["weather", "rain", "snow", "cold", "hot", "cloudy", "sunny", "temperature", "forecast", "天氣", "會不會下雨", "冷嗎", "熱嗎", "氣溫"]
    if any(k in lower_query for k in weather_keywords):
        return weather_agent_tool(query)
    search_keywords = ["latest", "news", "startup", "startups", "company", "companies", "top", "trending", "in 2025", "in 2024", "tell me"]
    if any(k in lower_query for k in search_keywords):
        return search_web(query)

    general_keywords = ["who are you", "what is your name", "what can you do", "fun fact"]
    if any(k in lower_query for k in general_keywords):
        return _general_chat(query)

    # Check if file exists and determine its format 
    file_path = get_file_path(file) if file is not None else None

    # Determine if the query should be processed as document-related
    non_doc_keywords = ["calculate", "sum", "date", "time", "how many", "how much", "weather", "temperature"]
    use_file_chain = not any(kw in query.lower() for kw in non_doc_keywords)

    # Step 3: If a file is uploaded 
    if file_path:
        file_lower = file_path.lower()

        # Process CSV 
        if file_lower.endswith(".csv"):
            try:
                with open(file_path, 'rb') as f:
                    result = chardet.detect(f.read())
                    encoding = result['encoding']
                df = pd.read_csv(file_path, encoding=encoding)
                csv_dataframe = df  # Ensure global assignment

                # If query mentions file, add context
                if "file" in query.lower() or "upload" in query.lower():
                    query = f"The user uploaded the following CSV file:\n\n{query}"

                result = crew.kickoff(inputs={"query": query})
                return safe_format_result(result)
            except Exception as e:
                return f"CSV Parsing Error: {e}"

        # 3-2: Process PDF / DOCX / TXT
        elif file_lower.endswith((".pdf", ".txt", ".docx")):
            try:
                loader = (
                    PyPDFLoader(file_path) if file_lower.endswith(".pdf")
                    else UnstructuredWordDocumentLoader(file_path) if file_lower.endswith(".docx")
                    else TextLoader(file_path)
                )
                docs = loader.load()
                chunks = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50).split_documents(docs)
                db = FAISS.from_documents(chunks, embeddings)
                session_retriever = db.as_retriever()
                session_qa_chain = ConversationalRetrievalChain.from_llm(
                    llm=llm_gpt4,
                    retriever=session_retriever,
                    memory=ConversationBufferMemory(memory_key="chat_history", return_messages=True),
                )

                # If the query is summary-related, use Summarize Chain
                if any(kw in query.lower() for kw in ["summarize", "summary", "summarise", "summarisation", "summarization", "摘要", "總結"]):
                    return document_summarize(file_path)

                # If using QA Chain is appropriate
                if use_file_chain:
                    try:
                        return session_qa_chain.run(query)
                    except Exception as e:
                        return f"Document QA Error: {e}"

                # Otherwise, proceed with Multi-Agent reasoning
                if "file" in query.lower() or "upload" in query.lower():
                    query = f"The user uploaded the following document:\n\n{query}"

                result = crew.kickoff(inputs={"query": query})
                return safe_format_result(result)

            except Exception as e:
                return f"Document Processing Error: {e}"

        else:
            return "Unsupported file format."

    # Step 4: If no file is uploaded, directly use CrewAI reasoning 
    try:
        result = crew.kickoff(inputs={"query": query})
        return safe_format_result(result)
    except Exception as e:
        return f"Multi-Agent Error: {e}"

# Gradio Interface Settings 
demo_description = """
**Context**:
This demo uses a **Retrieval-Augmented Generation (RAG)** system based on 
Biden’s 2023 State of the Union Address. 
All responses are grounded in this document. 
If no relevant information is found in the document, the system will say "No relevant info found."

**Sample Questions**:
1. What were the main topics regarding infrastructure in this speech?
2. How does the speech address the competition with China?
3. What does Biden say about job growth in the past two years?
4. Does the speech mention anything about Social Security or Medicare?
5. What does the speech propose regarding Big Tech or online privacy?

*Note: The LLaMA module generates responses based solely on the current query without follow-up memory or chat history management.*

Feel free to ask any question related to Biden’s 2023 State of the Union Address.
"""
demo_description2 = """
**Context**:
This demo uses a **Retrieval-Augmented Generation (RAG)** system based on 
Biden’s 2023 State of the Union Address. 
All responses are grounded in this document. 
If no relevant information is found in the document, the system will say "No relevant info found."

**Sample Questions**:
1. What were the main topics regarding infrastructure in this speech?
2. How does the speech address the competition with China?
3. What does Biden say about job growth in the past two years?
4. Does the speech mention anything about Social Security or Medicare?
5. What does the speech propose regarding Big Tech or online privacy?

*Note: The GPT module supports follow-up questions with conversation history management, enabling more interactive and context-aware discussions.*

Feel free to ask any question related to Biden’s 2023 State of the Union Address.
"""
demo_description3 = """
**Context**:
Upload a PDF, TXT, or DOCX file and ask a question about its content.
This demo uses **GPT-4o-Mini** to answer questions based on the content of your uploaded document.

Feel free to ask any question related to your document.
"""
demo_description4 = """
**Context**:
This demo uses a **refinement-based document summarisation chain**.
Upload a PDF, TXT, or DOCX file to get a concise, structured summary of its contents.
"""
demo_description5 = """
**Context**:
This demo presents a GPT-style Multi-Agent AI Assistant, built with **LangChain, CrewAI**, and **RAG (Retrieval-Augmented Generation)**. The system automatically understands your intent and routes the query to the best expert agent, enabling dynamic **multi-agent orchestration**.

**Supported features**:
- 📄 **Document Summarisation** (PDF, DOCX, TXT)
- ❓ **FAQ-style Q&A based on uploaded documents** (RAG-based)
- 🌐 **Live Web Search** (Online RAG + GPT post-processing summary)
- 📅 **Real-time Worldwide Date & Time** (LLM + GeoLocator + TimezoneFinder, supports any city globally)
- 🌦️ **Global Weather** (LLM Time Reasoning + Timezone + Few-Shot, supports fuzzy queries, 3-day forecast, 7-day history, hourly precision)
- ➗ **Math and Logic Calculations** (from scientific equations to financial or tax-related use cases)
- 💬 **General Chatting / Reasoning**

**Sample Questions**:
1. Summarise the document. *(→ Summarisation Agent)*
2. What are the key ideas mentioned in this file? *(→ RAG QA Agent)*
3. What is LangChain used for? | What are the latest trends in AI startups in 2025? | Tell me the most recent breakthrough in quantum computing. *(→ Online Rag Agent)*
4. What's the current time in London? | What’s today’s date in New York? | What time is it in Taipei right now? *(→ Time Agent)*
5. Will it rain in New York in 2 hours? | Is it going to be hot tomorrow in Nottingham? | What was the weather like in Paris two days ago? | Is it gonna rain later? *(→ Weather Agent)*
6. If I earn $15 per hour and work 8 hours a day for 5 days, how much will I earn? | What is 5 * 22.5 / sin(45) | 3^3 + 4^2 | Calculate 25 * log(1000) | What is the square root of 144 *(→ Math Agent)*
7. Who are you? | What can you do? | What is the meaning of life? *(→ General Chat Agent)*

Feel free to upload a document and ask related questions, or just type a question directly—no file upload required. *Note: CSV file analysis and auto visualisation is coming soon.*
"""

demo = gr.TabbedInterface(
    interface_list=[
        gr.Interface(
            fn=multi_agent_chat_advanced,
            inputs=[
                gr.Textbox(label="Enter your query"),
                gr.File(label="Upload file (CSV, PDF, TXT, DOCX)", file_count="single")
            ],
            outputs="text",
            title="Multi-Agent AI Assistant",
            allow_flagging="never",
            description=demo_description5
        ),
        gr.Interface(
            fn=document_summarize,
            inputs=[gr.File(label="Upload PDF, TXT, or DOCX")],
            outputs="text",
            title="Document Summarisation",
            allow_flagging="never",
            description=demo_description4
        ),
        gr.Interface(
            fn=upload_and_chat,
            inputs=[gr.File(label="Upload PDF, TXT, or DOCX"), gr.Textbox(label="Ask a question")],
            outputs="text",
            title="Your Docs Q&A (Upload + GPT-4 RAG)",
            allow_flagging="never",
            description=demo_description3
        ),
        gr.Interface(
            fn=rag_gpt4_qa,
            inputs="text",
            outputs="text",
            title="Biden Q&A (GPT-4 RAG)",
            allow_flagging="never",
            description=demo_description2
        ),
        gr.Interface(
            fn=rag_llama_qa,
            inputs="text",
            outputs="text",
            title="Biden Q&A (LLaMA RAG)",
            allow_flagging="never",
            description=demo_description
        ),
    ],
    tab_names=[
        "Multi-Agent AI Assistant",
        "Document Summarisation",
        "Your Docs Q&A (Upload + GPT-4 RAG)",
        "Biden Q&A (GPT-4 RAG)",
        "Biden Q&A (LLaMA RAG)"
    ],
    title="Smart RAG + Multi-Agent Assistant (with Web + Document AI)"
)

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860, share=False)