Spaces:
Sleeping
Sleeping
import streamlit as st | |
from io import BytesIO | |
from PIL import Image | |
from utils import convert_to_bw, load_colorization_model, colorize_bw_image | |
import os | |
os.environ["STREAMLIT_SERVER_HEADLESS"] = "true" | |
st.set_page_config(page_title="Image Colorizer", layout="centered") | |
st.title("Convert B&W images to Colored and vice versa") | |
uploaded_file = st.sidebar.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) | |
if uploaded_file: | |
# Open and convert the uploaded image to RGB format | |
image = Image.open(uploaded_file).convert("RGB") | |
option = st.sidebar.selectbox("Choose an action", ("Convert to Black & White", "Colorize Your B&W images")) | |
if st.sidebar.button("Process"): | |
#Convert the uploaded image to black and white | |
if option == "Convert to Black & White": | |
result_img = convert_to_bw(image) | |
#Colorize a black and white image using a pre-trained model | |
elif option == "Colorize Your B&W images": | |
with st.spinner("Colorizing..."): | |
net = load_colorization_model() | |
result_img = colorize_bw_image(image, net) | |
# Display both images in columns | |
col1, col2 = st.columns(2) | |
with col1: | |
st.image(image, caption="Original Image") | |
with col2: | |
st.image(result_img, caption="Processed Image") | |
# Create a buffer to store image bytes | |
buffer = BytesIO() | |
result_img.save(buffer, format="JPEG") | |
buffer.seek(0) # Reset cursor to the beginning | |
#Download Image in Jpeg | |
st.download_button( | |
label="Download Output Image", | |
data=buffer ,#result_img.tobytes() | |
file_name="output.jpeg", | |
mime="image/jpeg" | |
) |