Spaces:
Sleeping
Sleeping
Update src/utils.py
Browse files- src/utils.py +92 -90
src/utils.py
CHANGED
@@ -1,90 +1,92 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import cv2
|
3 |
-
from PIL import Image
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
-
|
25 |
-
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
return Image
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
from PIL import Image
|
4 |
+
import os
|
5 |
+
|
6 |
+
def convert_to_bw(image):
|
7 |
+
"""
|
8 |
+
Converts a PIL image to black & white (grayscale),
|
9 |
+
and then back to RGB to maintain compatibility with other processes.
|
10 |
+
|
11 |
+
Parameters:
|
12 |
+
image (PIL.Image): Input RGB image.
|
13 |
+
|
14 |
+
Returns:
|
15 |
+
PIL.Image: Black & white image in RGB format.
|
16 |
+
"""
|
17 |
+
return image.convert("L").convert("RGB")
|
18 |
+
|
19 |
+
def load_colorization_model():
|
20 |
+
"""
|
21 |
+
Loads the pre-trained Caffe model for colorizing black & white images.
|
22 |
+
|
23 |
+
Model files required:
|
24 |
+
- colorization_deploy_v2.prototxt
|
25 |
+
- colorization_release_v2.caffemodel
|
26 |
+
- pts_in_hull.npy
|
27 |
+
|
28 |
+
Returns:
|
29 |
+
cv2.dnn_Net: Loaded and initialized OpenCV DNN colorization model.
|
30 |
+
"""
|
31 |
+
# Paths to model architecture, weights, and cluster centers
|
32 |
+
base_path = os.path.join(os.path.dirname(__file__), "models")
|
33 |
+
proto_file = "models/colorization_deploy_v2.prototxt"
|
34 |
+
model_file = "models/colorization_release_v2.caffemodel"
|
35 |
+
cluster_file = "models/pts_in_hull.npy"
|
36 |
+
|
37 |
+
|
38 |
+
# Load the model using OpenCV DNN module
|
39 |
+
net = cv2.dnn.readNetFromCaffe(proto_file, model_file)
|
40 |
+
pts = np.load(cluster_file)
|
41 |
+
|
42 |
+
# Populate cluster centers as 1x1 convolution kernel
|
43 |
+
class8_ab = net.getLayerId("class8_ab")
|
44 |
+
conv8_313_rh = net.getLayerId("conv8_313_rh")
|
45 |
+
|
46 |
+
pts = pts.transpose().reshape(2, 313, 1, 1)
|
47 |
+
net.getLayer(class8_ab).blobs = [pts.astype(np.float32)]
|
48 |
+
net.getLayer(conv8_313_rh).blobs = [np.full([1, 313], 2.606, dtype=np.float32)]
|
49 |
+
|
50 |
+
return net
|
51 |
+
|
52 |
+
def colorize_bw_image(pil_img, net):
|
53 |
+
"""
|
54 |
+
Colorizes a grayscale (black & white) image using a pre-trained DNN model.
|
55 |
+
|
56 |
+
Parameters:
|
57 |
+
pil_img (PIL.Image): Input grayscale image in RGB format.
|
58 |
+
net (cv2.dnn_Net): Loaded OpenCV DNN colorization model.
|
59 |
+
|
60 |
+
Returns:
|
61 |
+
PIL.Image: Colorized image in RGB format.
|
62 |
+
"""
|
63 |
+
# Convert PIL image to NumPy array
|
64 |
+
img = np.array(pil_img)
|
65 |
+
img_rgb = img[:, :, [2, 1, 0]] # Convert RGB to BGR
|
66 |
+
img_rgb = img_rgb.astype("float32") / 255.0
|
67 |
+
# Convert to LAB color space and extract L channel
|
68 |
+
img_lab = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2LAB)
|
69 |
+
l_channel = img_lab[:, :, 0]
|
70 |
+
|
71 |
+
# Resize L channel to match model input size and normalize
|
72 |
+
input_l = cv2.resize(l_channel, (224, 224))
|
73 |
+
input_l -= 50
|
74 |
+
|
75 |
+
# Run inference
|
76 |
+
net.setInput(cv2.dnn.blobFromImage(input_l))
|
77 |
+
ab_channels = net.forward()[0, :, :, :].transpose((1, 2, 0)) # shape: (56, 56, 2)
|
78 |
+
|
79 |
+
# Resize predicted ab channels to match original image size
|
80 |
+
ab_channels = cv2.resize(ab_channels, (img.shape[1], img.shape[0]))
|
81 |
+
|
82 |
+
# Merge original L channel with predicted ab channels
|
83 |
+
lab_output = np.concatenate((l_channel[:, :, np.newaxis], ab_channels), axis=2)
|
84 |
+
|
85 |
+
# Convert LAB to BGR, clip values, and convert to uint8
|
86 |
+
bgr_out = cv2.cvtColor(lab_output, cv2.COLOR_LAB2BGR)
|
87 |
+
bgr_out = np.clip(bgr_out, 0, 1)
|
88 |
+
|
89 |
+
|
90 |
+
# Convert back to RGB and return as PIL Image
|
91 |
+
final_rgb = (bgr_out[:, :, [2, 1, 0]] * 255).astype("uint8")
|
92 |
+
return Image.fromarray(final_rgb)
|