import numpy as np import cv2 from PIL import Image import os def convert_to_bw(image): """ Converts a PIL image to black & white (grayscale), and then back to RGB to maintain compatibility with other processes. Parameters: image (PIL.Image): Input RGB image. Returns: PIL.Image: Black & white image in RGB format. """ return image.convert("L").convert("RGB") def load_colorization_model(): """ Loads the pre-trained Caffe model for colorizing black & white images. Model files required: - colorization_deploy_v2.prototxt - colorization_release_v2.caffemodel - pts_in_hull.npy Returns: cv2.dnn_Net: Loaded and initialized OpenCV DNN colorization model. """ # Paths to model architecture, weights, and cluster centers base_path = os.path.join(os.path.dirname(__file__), "models") # proto_file = "models/colorization_deploy_v2.prototxt" # model_file = "models/colorization_release_v2.caffemodel" # cluster_file = "models/pts_in_hull.npy" proto_file = os.path.join(base_path, "colorization_deploy_v2.prototxt") model_file = os.path.join(base_path, "colorization_release_v2.caffemodel") cluster_file = os.path.join(base_path, "pts_in_hull.npy") # Load the model using OpenCV DNN module net = cv2.dnn.readNetFromCaffe(proto_file, model_file) pts = np.load(cluster_file) # Populate cluster centers as 1x1 convolution kernel class8_ab = net.getLayerId("class8_ab") conv8_313_rh = net.getLayerId("conv8_313_rh") pts = pts.transpose().reshape(2, 313, 1, 1) net.getLayer(class8_ab).blobs = [pts.astype(np.float32)] net.getLayer(conv8_313_rh).blobs = [np.full([1, 313], 2.606, dtype=np.float32)] return net def colorize_bw_image(pil_img, net): """ Colorizes a grayscale (black & white) image using a pre-trained DNN model. Parameters: pil_img (PIL.Image): Input grayscale image in RGB format. net (cv2.dnn_Net): Loaded OpenCV DNN colorization model. Returns: PIL.Image: Colorized image in RGB format. """ # Convert PIL image to NumPy array img = np.array(pil_img) img_rgb = img[:, :, [2, 1, 0]] # Convert RGB to BGR img_rgb = img_rgb.astype("float32") / 255.0 # Convert to LAB color space and extract L channel img_lab = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2LAB) l_channel = img_lab[:, :, 0] # Resize L channel to match model input size and normalize input_l = cv2.resize(l_channel, (224, 224)) input_l -= 50 # Run inference net.setInput(cv2.dnn.blobFromImage(input_l)) ab_channels = net.forward()[0, :, :, :].transpose((1, 2, 0)) # shape: (56, 56, 2) # Resize predicted ab channels to match original image size ab_channels = cv2.resize(ab_channels, (img.shape[1], img.shape[0])) # Merge original L channel with predicted ab channels lab_output = np.concatenate((l_channel[:, :, np.newaxis], ab_channels), axis=2) # Convert LAB to BGR, clip values, and convert to uint8 bgr_out = cv2.cvtColor(lab_output, cv2.COLOR_LAB2BGR) bgr_out = np.clip(bgr_out, 0, 1) # Convert back to RGB and return as PIL Image final_rgb = (bgr_out[:, :, [2, 1, 0]] * 255).astype("uint8") return Image.fromarray(final_rgb)