ChintanSatva's picture
Update app.py
cc3cef4 verified
raw
history blame
17.8 kB
from fastapi import FastAPI, File, UploadFile, HTTPException
import pytesseract
import cv2
import os
from PIL import Image
import json
import unicodedata
from pdf2image import convert_from_bytes
from pypdf import PdfReader
import numpy as np
from typing import List
import io
import logging
import time
import asyncio
import psutil
import cachetools
import hashlib
app = FastAPI(title="Invoice OCR and Extraction API", version="1.0.0")
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Set Tesseract path
pytesseract.pytesseract.tesseract_cmd = "/usr/bin/tesseract"
# Initialize LLM with fallback handling
llm = None
try:
# Try to import and initialize vLLM
from vllm import LLM
# For Hugging Face Spaces, use a smaller, more compatible model
model_name = "microsoft/DialoGPT-medium" # Fallback model
llm = LLM(
model=model_name,
device="cpu",
enforce_eager=True,
tensor_parallel_size=1,
disable_custom_all_reduce=True,
max_model_len=1024, # Reduced for compatibility
trust_remote_code=True
)
logger.info("LLM model loaded successfully")
except Exception as e:
logger.error(f"Failed to load vLLM: {str(e)}")
logger.info("Will use rule-based extraction as fallback")
# In-memory caches (1-hour TTL)
raw_text_cache = cachetools.TTLCache(maxsize=100, ttl=3600)
structured_data_cache = cachetools.TTLCache(maxsize=100, ttl=3600)
def log_memory_usage():
"""Log current memory usage."""
try:
process = psutil.Process()
mem_info = process.memory_info()
return f"Memory usage: {mem_info.rss / 1024 / 1024:.2f} MB"
except:
return "Memory usage: N/A"
def get_file_hash(file_bytes):
"""Generate MD5 hash of file content."""
return hashlib.md5(file_bytes).hexdigest()
def get_text_hash(raw_text):
"""Generate MD5 hash of raw text."""
return hashlib.md5(raw_text.encode('utf-8')).hexdigest()
async def process_image(img_bytes, filename, idx):
"""Process a single image (JPG/JPEG/PNG) with OCR."""
start_time = time.time()
logger.info(f"Starting OCR for {filename} image {idx}, {log_memory_usage()}")
try:
img = Image.open(io.BytesIO(img_bytes))
# Convert to RGB if needed
if img.mode != 'RGB':
img = img.convert('RGB')
img_cv = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
# Preprocess image for better OCR
gray = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
img_pil = Image.fromarray(gray)
custom_config = r'--oem 3 --psm 6 -l eng'
page_text = pytesseract.image_to_string(img_pil, config=custom_config)
logger.info(f"Completed OCR for {filename} image {idx}, took {time.time() - start_time:.2f} seconds")
return page_text + "\n"
except Exception as e:
logger.error(f"OCR failed for {filename} image {idx}: {str(e)}")
return ""
async def process_pdf_page(img, page_idx):
"""Process a single PDF page with OCR."""
start_time = time.time()
logger.info(f"Starting OCR for PDF page {page_idx}")
try:
img_cv = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
# Preprocess image for better OCR
gray = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
img_pil = Image.fromarray(gray)
custom_config = r'--oem 3 --psm 6 -l eng'
page_text = pytesseract.image_to_string(img_pil, config=custom_config)
logger.info(f"Completed OCR for PDF page {page_idx}, took {time.time() - start_time:.2f} seconds")
return page_text + "\n"
except Exception as e:
logger.error(f"OCR failed for PDF page {page_idx}: {str(e)}")
return ""
def rule_based_extraction(raw_text: str):
"""Rule-based fallback extraction when LLM is not available."""
import re
# Initialize the structure
structured_data = {
"invoice": {
"invoice_number": {"value": "", "accuracy": 0.0},
"invoice_date": {"value": "", "accuracy": 0.0},
"due_date": {"value": "", "accuracy": 0.0},
"purchase_order_number": {"value": "", "accuracy": 0.0},
"vendor": {
"vendor_id": {"value": "", "accuracy": 0.0},
"name": {"value": "", "accuracy": 0.0},
"address": {
"line1": {"value": "", "accuracy": 0.0},
"line2": {"value": "", "accuracy": 0.0},
"city": {"value": "", "accuracy": 0.0},
"state": {"value": "", "accuracy": 0.0},
"postal_code": {"value": "", "accuracy": 0.0},
"country": {"value": "", "accuracy": 0.0}
},
"contact": {
"email": {"value": "", "accuracy": 0.0},
"phone": {"value": "", "accuracy": 0.0}
},
"tax_id": {"value": "", "accuracy": 0.0}
},
"buyer": {
"buyer_id": {"value": "", "accuracy": 0.0},
"name": {"value": "", "accuracy": 0.0},
"address": {
"line1": {"value": "", "accuracy": 0.0},
"line2": {"value": "", "accuracy": 0.0},
"city": {"value": "", "accuracy": 0.0},
"state": {"value": "", "accuracy": 0.0},
"postal_code": {"value": "", "accuracy": 0.0},
"country": {"value": "", "accuracy": 0.0}
},
"contact": {
"email": {"value": "", "accuracy": 0.0},
"phone": {"value": "", "accuracy": 0.0}
},
"tax_id": {"value": "", "accuracy": 0.0}
},
"items": [{
"item_id": {"value": "", "accuracy": 0.0},
"description": {"value": "", "accuracy": 0.0},
"quantity": {"value": 0, "accuracy": 0.0},
"unit_of_measure": {"value": "", "accuracy": 0.0},
"unit_price": {"value": 0, "accuracy": 0.0},
"total_price": {"value": 0, "accuracy": 0.0},
"tax_rate": {"value": 0, "accuracy": 0.0},
"tax_amount": {"value": 0, "accuracy": 0.0},
"discount": {"value": 0, "accuracy": 0.0},
"net_amount": {"value": 0, "accuracy": 0.0}
}],
"sub_total": {"value": 0, "accuracy": 0.0},
"tax_total": {"value": 0, "accuracy": 0.0},
"discount_total": {"value": 0, "accuracy": 0.0},
"total_amount": {"value": 0, "accuracy": 0.0},
"currency": {"value": "USD", "accuracy": 0.5}
}
}
# Simple pattern matching
try:
# Invoice number
inv_pattern = r'(?:invoice|inv)(?:\s*#|\s*no\.?|\s*number)?\s*:?\s*([A-Z0-9\-/]+)'
inv_match = re.search(inv_pattern, raw_text, re.IGNORECASE)
if inv_match:
structured_data["invoice"]["invoice_number"]["value"] = inv_match.group(1)
structured_data["invoice"]["invoice_number"]["accuracy"] = 0.7
# Date patterns
date_pattern = r'(\d{1,2}[/-]\d{1,2}[/-]\d{2,4}|\d{4}[/-]\d{1,2}[/-]\d{1,2})'
dates = re.findall(date_pattern, raw_text)
if dates:
structured_data["invoice"]["invoice_date"]["value"] = dates[0]
structured_data["invoice"]["invoice_date"]["accuracy"] = 0.6
# Total amount
amount_pattern = r'(?:total|amount|sum)\s*:?\s*\$?(\d+\.?\d*)'
amount_match = re.search(amount_pattern, raw_text, re.IGNORECASE)
if amount_match:
structured_data["invoice"]["total_amount"]["value"] = float(amount_match.group(1))
structured_data["invoice"]["total_amount"]["accuracy"] = 0.6
# Email
email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b'
email_match = re.search(email_pattern, raw_text)
if email_match:
structured_data["invoice"]["vendor"]["contact"]["email"]["value"] = email_match.group()
structured_data["invoice"]["vendor"]["contact"]["email"]["accuracy"] = 0.8
# Phone
phone_pattern = r'(?:\+?1[-.\s]?)?\(?([0-9]{3})\)?[-.\s]?([0-9]{3})[-.\s]?([0-9]{4})'
phone_match = re.search(phone_pattern, raw_text)
if phone_match:
structured_data["invoice"]["vendor"]["contact"]["phone"]["value"] = phone_match.group()
structured_data["invoice"]["vendor"]["contact"]["phone"]["accuracy"] = 0.7
except Exception as e:
logger.error(f"Rule-based extraction error: {str(e)}")
return structured_data
async def process_with_model(filename: str, raw_text: str):
"""Process raw text with available model or fallback to rule-based."""
start_time = time.time()
logger.info(f"Starting text processing for {filename}")
# Check structured data cache
text_hash = get_text_hash(raw_text)
if text_hash in structured_data_cache:
logger.info(f"Structured data cache hit for {filename}")
return structured_data_cache[text_hash]
# Truncate text
if len(raw_text) > 5000:
raw_text = raw_text[:5000]
logger.info(f"Truncated raw text for {filename} to 5000 characters")
try:
if llm is not None:
# Use LLM if available
prompt = f"""Extract invoice data from this text and return JSON:
Text: {raw_text}
Return structured JSON with invoice details including vendor, amounts, dates."""
outputs = llm.generate(prompts=[prompt], sampling_params={"max_tokens": 512, "temperature": 0.1})
response_text = outputs[0].outputs[0].text
# Try to parse JSON from response
try:
json_start = response_text.find("{")
json_end = response_text.rfind("}") + 1
if json_start >= 0 and json_end > json_start:
structured_data = json.loads(response_text[json_start:json_end])
else:
raise ValueError("No JSON found in response")
except:
# Fallback to rule-based if JSON parsing fails
structured_data = rule_based_extraction(raw_text)
else:
# Use rule-based extraction
structured_data = rule_based_extraction(raw_text)
# Cache the result
structured_data_cache[text_hash] = structured_data
logger.info(f"Text processing for {filename} completed in {time.time() - start_time:.2f} seconds")
return structured_data
except Exception as e:
logger.error(f"Text processing failed for {filename}: {str(e)}")
return rule_based_extraction(raw_text)
@app.get("/")
async def root():
"""Health check endpoint."""
return {
"message": "Invoice OCR and Extraction API",
"status": "active",
"llm_available": llm is not None
}
@app.post("/ocr")
async def extract_and_structure(files: List[UploadFile] = File(...)):
"""Main endpoint for OCR and data extraction."""
output_json = {
"success": True,
"message": "",
"data": []
}
success_count = 0
fail_count = 0
logger.info(f"Starting processing for {len(files)} files")
for file in files:
total_start_time = time.time()
logger.info(f"Processing file: {file.filename}")
# Validate file format
valid_extensions = {'.pdf', '.jpg', '.jpeg', '.png'}
file_ext = os.path.splitext(file.filename.lower())[1] if file.filename else '.unknown'
if file_ext not in valid_extensions:
fail_count += 1
output_json["data"].append({
"filename": file.filename,
"structured_data": {"error": f"Unsupported file format: {file_ext}"},
"error": f"Unsupported file format: {file_ext}"
})
logger.error(f"Unsupported file format for {file.filename}: {file_ext}")
continue
# Read file into memory
try:
file_start_time = time.time()
file_bytes = await file.read()
file_stream = io.BytesIO(file_bytes)
file_hash = get_file_hash(file_bytes)
logger.info(f"Read file {file.filename}, size: {len(file_bytes)/1024:.2f} KB")
except Exception as e:
fail_count += 1
output_json["data"].append({
"filename": file.filename,
"structured_data": {"error": f"Failed to read file: {str(e)}"},
"error": f"Failed to read file: {str(e)}"
})
logger.error(f"Failed to read file {file.filename}: {str(e)}")
continue
# Check raw text cache
raw_text = ""
if file_hash in raw_text_cache:
raw_text = raw_text_cache[file_hash]
logger.info(f"Raw text cache hit for {file.filename}")
else:
if file_ext == '.pdf':
# Try extracting embedded text first
try:
extract_start_time = time.time()
reader = PdfReader(file_stream)
for page in reader.pages:
text = page.extract_text()
if text:
raw_text += text + "\n"
logger.info(f"Embedded text extraction for {file.filename}, text length: {len(raw_text)}")
except Exception as e:
logger.warning(f"Embedded text extraction failed for {file.filename}: {str(e)}")
# If no embedded text, perform OCR
if not raw_text.strip():
try:
convert_start_time = time.time()
images = convert_from_bytes(file_bytes, dpi=150, first_page=1, last_page=3) # Limit pages
logger.info(f"PDF to images conversion for {file.filename}, {len(images)} pages")
ocr_start_time = time.time()
page_texts = []
for i, img in enumerate(images):
page_text = await process_pdf_page(img, i)
page_texts.append(page_text)
raw_text = "".join(page_texts)
logger.info(f"Total OCR for {file.filename}, text length: {len(raw_text)}")
except Exception as e:
fail_count += 1
output_json["data"].append({
"filename": file.filename,
"structured_data": {"error": f"OCR failed: {str(e)}"},
"error": f"OCR failed: {str(e)}"
})
logger.error(f"OCR failed for {file.filename}: {str(e)}")
continue
else: # JPG/JPEG/PNG
try:
ocr_start_time = time.time()
raw_text = await process_image(file_bytes, file.filename, 0)
logger.info(f"Image OCR for {file.filename}, text length: {len(raw_text)}")
except Exception as e:
fail_count += 1
output_json["data"].append({
"filename": file.filename,
"structured_data": {"error": f"Image OCR failed: {str(e)}"},
"error": f"Image OCR failed: {str(e)}"
})
logger.error(f"Image OCR failed for {file.filename}: {str(e)}")
continue
# Normalize text
try:
raw_text = unicodedata.normalize('NFKC', raw_text)
raw_text = raw_text.encode('utf-8', errors='ignore').decode('utf-8')
raw_text_cache[file_hash] = raw_text
logger.info(f"Text normalization for {file.filename} completed")
except Exception as e:
logger.warning(f"Text normalization failed for {file.filename}: {str(e)}")
# Process with model or rule-based extraction
if raw_text.strip():
structured_data = await process_with_model(file.filename, raw_text)
success_count += 1
output_json["data"].append({
"filename": file.filename,
"structured_data": structured_data,
"raw_text": raw_text[:500] + "..." if len(raw_text) > 500 else raw_text, # Include snippet
"error": ""
})
else:
fail_count += 1
output_json["data"].append({
"filename": file.filename,
"structured_data": {"error": "No text extracted from file"},
"error": "No text extracted from file"
})
logger.info(f"Total processing for {file.filename} completed in {time.time() - total_start_time:.2f} seconds")
output_json["message"] = f"Processed {len(files)} files. {success_count} succeeded, {fail_count} failed."
if fail_count > 0 and success_count == 0:
output_json["success"] = False
logger.info(f"Batch processing completed: {success_count} succeeded, {fail_count} failed")
return output_json
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)