Update app.py
Browse files
app.py
CHANGED
|
@@ -8,7 +8,6 @@ import torch
|
|
| 8 |
import psutil
|
| 9 |
import cachetools
|
| 10 |
import hashlib
|
| 11 |
-
from bitsandbytes import quantize
|
| 12 |
|
| 13 |
# Set environment variable for cache
|
| 14 |
os.environ["HF_HOME"] = "/app/cache"
|
|
@@ -25,12 +24,11 @@ try:
|
|
| 25 |
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer", cache_dir="/app/cache")
|
| 26 |
model = AutoModelForCausalLM.from_pretrained(
|
| 27 |
model_name,
|
| 28 |
-
torch_dtype=torch.
|
| 29 |
device_map="cpu",
|
| 30 |
low_cpu_mem_usage=True,
|
| 31 |
cache_dir="/app/cache",
|
| 32 |
-
trust_remote_code=True
|
| 33 |
-
quantization_config={"load_in_4bit": True} # 4-bit quantization
|
| 34 |
)
|
| 35 |
except Exception as e:
|
| 36 |
logger.error(f"Failed to load BitNet model: {str(e)}")
|
|
@@ -49,7 +47,7 @@ def get_text_hash(text: str):
|
|
| 49 |
"""Generate MD5 hash of text."""
|
| 50 |
return hashlib.md5(text.encode('utf-8')).hexdigest()
|
| 51 |
|
| 52 |
-
# Simplified categories (reference only, not
|
| 53 |
ALLOWED_CATEGORIES = [
|
| 54 |
{"name": "income", "subcategories": ["dividends", "interest earned", "retirement pension", "tax refund", "unemployment", "wages", "other income"]},
|
| 55 |
{"name": "transfer in", "subcategories": ["cash advances and loans", "deposit", "investment and retirement funds", "savings", "account transfer", "other transfer in"]},
|
|
@@ -103,7 +101,7 @@ Amount: {amount}
|
|
| 103 |
inputs = tokenizer(prompt, return_tensors="pt").to("cpu")
|
| 104 |
outputs = model.generate(
|
| 105 |
**inputs,
|
| 106 |
-
max_new_tokens=
|
| 107 |
do_sample=False,
|
| 108 |
num_beams=1
|
| 109 |
)
|
|
|
|
| 8 |
import psutil
|
| 9 |
import cachetools
|
| 10 |
import hashlib
|
|
|
|
| 11 |
|
| 12 |
# Set environment variable for cache
|
| 13 |
os.environ["HF_HOME"] = "/app/cache"
|
|
|
|
| 24 |
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer", cache_dir="/app/cache")
|
| 25 |
model = AutoModelForCausalLM.from_pretrained(
|
| 26 |
model_name,
|
| 27 |
+
torch_dtype=torch.bfloat16, # Optimized for CPU
|
| 28 |
device_map="cpu",
|
| 29 |
low_cpu_mem_usage=True,
|
| 30 |
cache_dir="/app/cache",
|
| 31 |
+
trust_remote_code=True
|
|
|
|
| 32 |
)
|
| 33 |
except Exception as e:
|
| 34 |
logger.error(f"Failed to load BitNet model: {str(e)}")
|
|
|
|
| 47 |
"""Generate MD5 hash of text."""
|
| 48 |
return hashlib.md5(text.encode('utf-8')).hexdigest()
|
| 49 |
|
| 50 |
+
# Simplified categories (reference only, not in prompt)
|
| 51 |
ALLOWED_CATEGORIES = [
|
| 52 |
{"name": "income", "subcategories": ["dividends", "interest earned", "retirement pension", "tax refund", "unemployment", "wages", "other income"]},
|
| 53 |
{"name": "transfer in", "subcategories": ["cash advances and loans", "deposit", "investment and retirement funds", "savings", "account transfer", "other transfer in"]},
|
|
|
|
| 101 |
inputs = tokenizer(prompt, return_tensors="pt").to("cpu")
|
| 102 |
outputs = model.generate(
|
| 103 |
**inputs,
|
| 104 |
+
max_new_tokens=50, # Further reduced for speed
|
| 105 |
do_sample=False,
|
| 106 |
num_beams=1
|
| 107 |
)
|